The algebraic expression that will represent the perimeter in centimeters of the given rectangle is: 
<em><u>Recall:</u></em>
Perimeter of a rectangle = 2(L + W)
<em>Given the following dimension of a </em><em>rectangle</em><em>:</em>
- width (W) = (8.4x + 2.2) cm
- length (L) = (4.5x + 3.4) cm
To find the expression that represents the perimeter, plug in the given values into the formula for perimeter.
Perimeter = 
Perimeter = 
Perimeter = 
Perimeter = 
Therefore, the algebraic expression that will represent the perimeter in centimeters of the given rectangle is: 
Learn more here:
brainly.com/question/18869010
the answer for this would be the last one. two rays that meet at a end point.
hope this helps!
Answer:
<h3>From my analysis:</h3><h3>2 ⁷/9 = 25/9 (improper fraction)</h3><h3>25 ÷ 9 = 2.777777777777777</h3>
<h3>Results: twenty-five ninth, 2.7 repeating where the 7 is repeating......</h3>
<h3>Hope this helps</h3><h3>Good luck ✅</h3>
Answer:
a) Discrete Variable
b) Discrete Variable
c) Discrete Variable
d) Continuous Variable
Step-by-step explanation:
We have to identify the given variable as discrete r continuous.
Discrete Variables:
- They are expressed in whole numbers.
- They are counted not measured.
- They cannot take any value within an interval.
Continuous Variables:
- They are expressed in decimal numbers.
- They are measured not counted.
- They cannot take any value within an interval.
a) The number of countries ever visited
Since number of countries will always be expressed in whole numbers and not decimals. Also, they will always be counted and not measured. Thus, it is a discrete variable.
b) The number of sons
Since number of sons will always be expressed in whole numbers and not decimals. Also, they will always be counted and not measured. Thus, it is a discrete variable.
c) Shoe size
Shoe size are expressed in whole number. The underlying measure is length of feet which is a continuous variable but shoe size are always given in whole number. Thus, they cannot take any value within an interval. Thus, it is a discrete variable.
d) Body temperature
Body temperature can be expressed in decimal. A Body temperature of 42.5 makes sense. Thus, they can take any value within an interval. Also, it is measured not counted. Thus, it is a discrete variable.
Answer:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's find the answer.
Because we have 3 equations and 3 variables (x1, x2, x3) a 3x3 matrix (A) can be constructed by using their respectively coefficients.
Equations:
Eq. 1 : x1 + 2x2 + 5x3 = 5
Eq. 2 : x1 + x2 + x3 = 6
E1. 3 : 4x1 + 6x2 + 5x3 = 7
Coefficients for x1 ; x2 ; x3
From eq. 1 : 1 ; 2 ; 5
From eq. 2 : 1 ; 1 ; 1
From eq. 3 : 4 ; 6 ; 5
So matrix A is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D)
And the vector of vriables (X) is:
![\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D)
Now we can find the resulting vector (B) using the 'resulting values' from each equation:
![\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
In conclusion, AX=B is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)