Explanation:
Meiosis makes genetic variety possible. It makes sperm & egg cells called gametes. Each gamete has 23 chromosomes. To make a diploid cell two gametes (sperm & cell) come together.
During prophase 1 the chromosomes pair up with their homologous pairs so they can transfer their genetic information and exchange it between each other. It makes recombinant chromosomes that influence the genetic diversity between the same people.
Now they are in metaphase 1, the chromosomes are in pairs in the middle of the cell. In anaphase 1, the chromosomes are pulled away by the spindle fibers. Then in telophase 1, there are two formed nuclei. Cytokinesis 1 then splits the cytoplasm.
Now they are in meiosis 2. During prophase 2, there are chromosomes and the spindles are starting to form again without crossing over like in prophase 1. In metaphase 2, chromosomes are going to line up in the middle in both cells unlike during metaphase 1 where the chromosomes were only in pairs. In anaphase 2, only the chromatids are being pulled away by the spindle fibers. Next in telophase 2 the nuclei reform and the 2 cells are each going to divide into 4 cells. Finally, cytokinesis completely splits the cytoplasm.
Keeping in mind that each sex only produces one type of gamete cell (sperm or eggs), and of the independent assortment and crossing over of chromosomes, the end result will be diversity.
Answer:
Fine focus.
Explanation:
If you're referencing a microscope, then it would be fine focus. Coarse focus is a basic focus used to properly see a specimen, while fine focus enhance clarity and precision. To use both, you have to gently twist a knob until you can see the specimen at a desired clarity.
Here's a reference image if you need it, it's labeled all the parts of a microscope.
Because if a hypha is damaged, fungi can seal septa pores to prevent cytoplasmic leakage.
Because they have so many children at once.