John most likely lives in a<u> "planned economy".</u>
A planned economy is a sort of financial framework where venture and the assignment of capital merchandise happen as per vast monetary and creation designs. A planned economy may utilize brought together, decentralized or participatory types of financial planning. A planned economy is a monetary framework in which the administration controls and manages generation, dispersion, costs, etc.
Answer:
journal entry are given below
carrying value = $4000 and cash received is $2000
Explanation:
given data
delivery van cost = $20,000
accumulated depreciation = $16,000
Annual depreciation = $2,000
solution
journal entry are
date title debit credit
December 29, 2019 Cash $2000
Accumulated depreciation $16000
Delivery van $20000
note that
here carrying value is = $20000 - $16000
carrying value = $4000
and cash received is $2000
Answer:
$366,287.15
Explanation:
Annual salary = $32000
No. of years (n) = 30 years
Increment in salary = $600
Deposit rate = 10%
Interest rate (r) = 7% or 0.07
Growth rate (g) = Increment in salary \div annual salary
Growth rate = $600 \ $32000
Growth rate = 0.01875
First deposit = $32000 x 10% = $3200
Future worth = [First deposit \ (r - g)] x [(1 + r)n - (1 + g)n]
Future worth = [$3200 \ (0.07 - 0.01875)] x [(1 + 0.07)30 - (1 + 0.01875)30]
Future worth = [$3200 \ 0.05125] x [(1.07)30 - (1.01875)30]
Future worth = $62439.0243902 x [7.6122550423 - 1.7459373366]
Future worth = $62439.0243902 x 5.8663177057
Future worth = $366287.15
Hence, the future worth at retirement is $366,287.15
The difference between the monthly payment of R and S is equal to $48.53 by following the compound interest formula. Thus, Loan R's monthly loan amount is greater than Loan S.
<h3>What is a Compound interest loan?</h3>
Combined interest (or compound interest) is the loan interest or deposit calculated based on both the original interest and accrued interest from earlier periods.
![\rm\,For\,R\\\\P = \$\,17,550\\r\,= 5.32\%\\Time\,= n= 7\,years\\Amount\,paid= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\=[ 17,550 (1+\dfrac{5.32}{100\times12})^{7\times12} ]\\= [ 17,550 (\dfrac{12.0532}{12})^{84} ]\\\\= [ 17,550 (1.00443^{84} ]\\\\= \$ 25,440.48\\\\Total\,monthly\,payment = \rm\,\dfrac{25,440.48}{84}\\\\= \$\, $302.86\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CR%5C%5C%5C%5CP%20%3D%20%5C%24%5C%2C17%2C550%5C%5Cr%5C%2C%3D%205.32%5C%25%5C%5CTime%5C%2C%3D%20n%3D%207%5C%2Cyears%5C%5CAmount%5C%2Cpaid%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%3D%5B%2017%2C550%20%281%2B%5Cdfrac%7B5.32%7D%7B100%5Ctimes12%7D%29%5E%7B7%5Ctimes12%7D%20%5D%5C%5C%3D%20%5B%2017%2C550%20%28%5Cdfrac%7B12.0532%7D%7B12%7D%29%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%20%5B%2017%2C550%20%281.00443%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%5C%24%2025%2C440.48%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%20%5Crm%5C%2C%5Cdfrac%7B25%2C440.48%7D%7B84%7D%5C%5C%5C%5C%3D%20%5C%24%5C%2C%20%24302.86%5C%5C%5C%5C)
![\rm\,For\,S =\\\\P=\,\$ 15,925\\r\,= 6.07\%\\T=n= 9\,years\\\\Amount\,paid\,= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\\\\= [15,925(1+\dfrac{0.0607}{12})^{9\times12} ]\\\\\\= [15,925(1+\dfrac{0.0607}{12})^{108} ]\\\\=[15,925(1.7247.84)} ]\\\\\= \$27,467.19\\\\Total\,monthly\,payment =\dfrac{\rm\,\$\,27,469.19}{108}\\\\= \$ 254.326\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CS%20%3D%5C%5C%5C%5CP%3D%5C%2C%5C%24%2015%2C925%5C%5Cr%5C%2C%3D%206.07%5C%25%5C%5CT%3Dn%3D%209%5C%2Cyears%5C%5C%5C%5CAmount%5C%2Cpaid%5C%2C%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B9%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B108%7D%20%5D%5C%5C%5C%5C%3D%5B15%2C925%281.7247.84%29%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5C%2427%2C467.19%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%5Cdfrac%7B%5Crm%5C%2C%5C%24%5C%2C27%2C469.19%7D%7B108%7D%5C%5C%5C%5C%3D%20%5C%24%20254.326%5C%5C%5C%5C)
The difference between the monthly payment of R and S is equal to $48.53.
Hence, Loan R's monthly payment is greater than the loan's monthly payment by $48.53
To learn more about Compound interest, refer to the link:
brainly.com/question/14331235
Im gonna go with e sorry if it’s wrong