Answer: You need to combine like terms the answer is 2y+2x
First term: a(1) = 4; common ratio: r = 2
Then:
a(n) = 4(2)^(n-1)
Check: Predict the 4th term using this formula:
a(4) = 4(2)^3 = 4(8) = 32 (correct)
Ms. Harris commission rate is 11.76 percent
Angles T and V of the parallelogram are equal to 91°.
Calculating the Value of x
In the parallelogram TUVS, adjacent angles U and V are given as,
U = 4x+9
V = 6x-29
Since U and V are adjacent angles, and as per the properties of a parallelogram, sum of adjacent angles is equal to 180°.
4x+9 + 6x-29 = 180
10x - 20 =180
10x = 200
x = 20
Calculating the Angles of the Parallelogram
∠U = 4x + 9
∠U = 4(20) + 9
∠U = 80 + 9
∠U = 89°
∠V = 6x - 29
∠V = 6(20) - 29
∠V = 120 - 29
∠V = 91°
According to the properties of a parallelogram, opposite angles are of equal measure.
∴ ∠T = ∠V and ∠S = ∠U
⇒ ∠T = 91° and ∠S = 89°
Learn more about a parallelogram here:
brainly.com/question/1563728
#SPJ1
Using this equation, f(3) = 23.
In order to find the value of f(3), we need to take the f(x) equation and put 3 everywhere we see x. Then we follow the order of operations to solve. So, let's start with the original.
f(x) = 2x^2 + 5sqrt(x - 2)
Now place 3 in for each x.
f(3) = 2(3)^2 + 5sqrt(3 - 2)
Now square the 3.
f(3) = 2(9) + 5 sqrt(3 - 2)
Do the subtraction inside of the parenthesis.
f(3) = 2(9) + 5sqrt(1)
Take the square root
f(3) = 2(9) + 5(1)
Multiply.
f(3) = 18 + 5
And add.
f(3) = 23