Answer:
B. a decrease in the number of pathogens in the body
Explanation:
White blood cell includes immune cell like monocytes, macrophages, neutrophils, basophils, eosinophils, etc. These cells are responsible for fighting with the pathogens or foreign molecules and eliminate them from the body.
So when any pathogens get enter in the body these cell kills those pathogen and protect us from them. Therefore the decrease in the number of pathogens in the body is a direct indication that the white blood cells in the body are working. So the right answer is B.
Answer: An error during transcription could produce a shorter protein or induce changes in the protein's sequence.
Explanation: Transcription is the process of single-stranded RNA synthesis from a DNA template (gene). During this process, RNA polymerase reads the DNA template and synthetize RNA, keeping the sequence. The RNA sequence will be reading later by ribosomes and protein will be produced. An error in transcription could produce changes in codons that are sequences of 3 nucleotides that determine aminoacids of the protein, and that would change protein folding and inactive it. Another possible result would be that error in transcription produce a premature stop codon that cause a shorter inactive protein.
Answer:
Explanation:
Australopithecina or Hominina is a subtribe in the tribe Hominini. The members of the subtribe are generally Australopithecus (cladistically including the genera Homo, Paranthropus,[2] and Kenyanthropus), and it typically includes the earlier Ardipithecus, Orrorin, Sahelanthropus, and Graecopithecus. All these related species are now sometimes collectively termed australopithecines or homininians.[3][4] They are the extinct, close relatives of humans and, with the extant genus Homo, comprise the human clade. Members of the human clade, i.e. the Hominini after the split from the chimpanzees, are now called Hominina[5] (see Hominidae; terms "hominids" and hominins).
While none of the groups normally directly assigned to this group survived, the australopithecines do not appear to be literally extinct (in the sense of having no living descendants) as the genera Kenyanthropus, Paranthropus and Homo probably emerged as sister of a late Australopithecus species such as A. africanus and/or A. sediba.
The terms australopithecine, et al., come from a former classification as members of a distinct subfamily, the Australopithecinae.[6] Members of Australopithecus are sometimes referred to as the "gracile australopithecines", while Paranthropus are called the "robust australopithecines".[7][8]
The australopithecines occurred in the Plio-Pleistocene era and were bipedal, and they were dentally similar to humans, but with a brain size not much larger than that of modern apes, with lesser encephalization than in the genus Homo.[9] Humans (genus Homo) may have descended from australopithecine ancestors and the genera Ardipithecus, Orrorin, Sahelanthropus, and Graecopithecus are the possible ancestors of the australopithecines.[8]
The answer should be advantame