A) The probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
B) The probability the golfer got exactly two holes-in-one during a single game is 8.57%.
C) The probability the golfer got six holes-in-one during a single game is close to 0%.
<h2 /><h2><u>How to determine probabilities</u></h2>
Since a miniature golf player sinks a hole-in-one about 12% of the time on any given hole and is going to play 8 games at 18 holes each, to determine A) what is the probability the golfer got zero or one hole -in-one during a single game, B) what is the probability the golfer got exactly two holes-in-one during a single game, and C) what is the probability the golfer got six holes-in-one during a single game , the following calculations must be performed:
- 1 - 0.12 = 0.88
- 0.88 ^ 17 = 0.1138
- 0.88 ^ 18 = 0.1001
Therefore, the probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
- 0.88 ^ 18 - 0.12 ^ 2 = X
- 0.0857 = X
Therefore, the probability the golfer got exactly two holes-in-one during a single game is 8.57%.
- 0.12 ^ 6 x 0.88 ^ 12 = X
- 0.0000000001 = X
Therefore, the probability the golfer got six holes-in-one during a single game is close to 0%.
Learn more about probabilities in brainly.com/question/25273534
Answer:
the answer is -7
please mark this as brainliest
Answer:
40 percent
Step-by-step explanation:
If you multiply 25x4 its 100, so 15x4 is 60 the rest would be 40. that 40 would be the rest of the percentage.
Answer:
1. Linear
2. Linear
3. Non-Linear
4. Non-Linear
5. Linear
6. Non-Linear
7. Linear
8. Non-Linear
9. Linear
The code should be LLNNLNLNL
The third side of triangle ABC is AB. Using the Pythagorean Theorem, its length is 12.
12² + 16² = 20²
∠F is congruent to ∠C and so the sin(∠F) = sin(∠C)
The sin(∠C) = opposite/hypotenuse
= |AB| / |AC|
= 12/20
= 3/5
= 0.6
Answer:
Yes, it is 0.6