The surface area of the right triangular prism is 270 sq ft
<h3>Total surface ara of the prism</h3>
The total surface area of the prism is the sum of all the area of its faces
For the two triangles
A = 2(0.5bh)
A = bh
A = 7 * 12 = 84 sq.ft
For the two rectangles
A = 2lw
A = 2(6*12)
A = 2 * 72 = 144 sq.ft
For the third triangle;
Area 6ft * 7ft
Area = 42 sq.feet
Taking the sum of the areas
TSA = 84 + 144 + 42
TSA = 270 sq ft
Hence the surface area of the right triangular prism is 270 sq ft
Learn more on surface area of prism here; brainly.com/question/1297098
Answer:
the answer to that question is 12,600 rupees
Answer:
205
Step-by-step explanation:
<h3>
Answer: 1</h3>
Point B is the only relative minimum here.
===========================================================
Explanation:
A relative minimum is a valley point, or lowest point, in a given neighborhood. Points to the left and right of the valley point must be larger than the relative min (or else you'd have some other lower point to negate its relative min-ness).
Point B is the only point that fits the description mentioned in the first paragraph. For a certain neighborhood, B is the lowest valley point so that's why we have a relative min here.
There's only 1 such valley point in this graph.
--------------
Side notes:
- Points A and D are relative maximums since they are the highest point in their respective regions. They represent the highest peaks of their corresponding mountains.
- Points A, C and E are x intercepts or roots. This is where the graph either touches the x axis or crosses the x axis.
- The phrasing "a certain neighborhood" is admittedly vague. It depends on further context of the problem. There are multiple ways to set up a region or interval of points to consider. Though visually you can probably spot a relative min fairly quickly by just looking at the valley points.
- If you have a possible relative min, look directly to the left and right of this point. if you can find a lower point, then the candidate point is <u>not</u> a relative min.
After 2 that x is equal to 67