<span>To solve these GCF and LCM problems, factor the numbers you're working with into primes:
3780 = 2*2*3*3*3*5*7
180 = 2*2*3*3*5
</span><span>We know that the LCM of the two numbers, call them A and B, = 3780 and that A = 180. The greatest common factor of 180 and B = 18 so B has factors 2*3*3 in common with 180 but no other factors in common with 180. So, B has no more 2's and no 5's
</span><span>Now, LCM(180,B) = 3780. So, A or B must have each of the factors of 3780. B needs another factor of 3 and a factor of 7 since LCM(A,B) needs for either A or B to have a factor of 2*2, which A has, and a factor of 3*3*3, which B will have with another factor of 3, and a factor of 7, which B will have.
So, B = 2*3*3*3*7 = 378.</span>
We can rewrite the expression under the radical as

then taking the fourth root, we get
![\sqrt[4]{\left(\dfrac32a^2b^3c^4\right)^4}=\left|\dfrac32a^2b^3c^4\right|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cleft%28%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%29%5E4%7D%3D%5Cleft%7C%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%7C)
Why the absolute value? It's for the same reason that

since both
and
return the same number
, and
captures both possibilities. From here, we have

The absolute values disappear on all but the
term because all of
,
and
are positive, while
could potentially be negative. So we end up with
