1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KonstantinChe [14]
2 years ago
6

The data set below has a lower quartile of 13 and an upper quartile of 37.

Mathematics
1 answer:
Levart [38]2 years ago
7 0

The dataset 78 is an outlier of the dataset

<h3>How to determine the true statement about the outlier?</h3>

The dataset is given as:

1, 12, 13, 15, 18, 20, 35, 37, 40, 78

Where

Q1 = 13

Q3 = 37

The boundaries of the outliers are given as:

L = Q1 - 1.5 * (Q3 - Q1)

U = Q3 + 1.5 * (Q3 - Q1)

Substitute the known values in the above equation

L = 13 - 1.5 * (37 - 13) = -23

U = 37 + 1.5 * (37 - 13) = 73

This means that the data elements outside the range -23 to 73 are outliers.

78 is outside this range

Hence, 78 is an outlier of the dataset

Read more about outliers at:

brainly.com/question/3631910

#SPJ1

You might be interested in
LetXbe a continuous random variable with densityf(x) ={3e−3x,whenx &gt;0,0,elsewhere.(a) Verify thatfis a density function.(b) C
makkiz [27]

Answer:

7

Step-by-step explanation:

Explanation:

Length(l), breadth and height of cube are of same measure.

Volume of cube of length

l

is

v

=

l

3

;

v

=

216

∴

l

3

=

216

or

l

=

3

√

216

=

6

cm , therefore,

Length of three dimensions of the cube is

6

cm. [Ans]

6 0
3 years ago
Jhalen gave a presentation in health class about the importance of supportive sneakers. His presentation was 2/3 the length of L
cluponka [151]

Answer: Lenayah's presentation was 12 minutes long.

Step-by-step explanation:

  1. Set up a proportion. 2/3 = 8/x.
  2. Cross multiply. 2x = 24
  3. Divide both sides by 2. x =12
5 0
3 years ago
The Math Club raised money for its spring banquet by washing vehicles. The club charged $3 per car and $5 per truck. The club ea
Neko [114]

Answer:

3C + 5 T = 550

C+T= 122

PUT IN 1  T= 122-C

3C + 5 (122-C)=550

3C -5C + 610=550

-2C= 550 - 610= -30

C= 15

T= 122-15 = 107

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
Put =, &gt;, or &lt; between<br> -0.171100011 _____ -0.171100010
sashaice [31]

Answer:

Put "<" between -0.171100011 _____ -0.171100010

Step-by-step explanation:

-0.171100010 is greater than -0.171100011  because they are negative numbers so -0.171100011 is further than -0.171100010 to 0, therefore -0.171100010 is greater.

Mark brainliest if this helped :)

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of the expression shown below?
    10·2 answers
  • A. 2<br> B. -2<br> C.1/2<br> D. -1/2
    6·1 answer
  • \You want to find out the favorite subjects of students at your school. Which plan describes a good sample?
    12·2 answers
  • PLEASE HELP ASAP OFFERING 10 POINTS
    11·1 answer
  • Points B and C lie on a circle with center O and radius r = 5 units. If the length of BC is 10.91 units, what is m∠BOC in radian
    9·2 answers
  • Help please double points
    5·1 answer
  • I NEED HELP FAST!!!! 15PTS
    15·1 answer
  • Does 4/3 terminate or repeat?
    8·1 answer
  • If f(x) = fx -6, what is f(1/2)?
    9·2 answers
  • 50 points and Brainliest to whoever solves this problem
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!