The question is incomplete. The complete question is as follows:
Which of the following mutations is most likely to cause a phenotypic change?
A) a duplication of all or most introns
B) a large inversion whose ends are each in intergenic regions
C) a nucleotide substitution in an exon coding for a transmembrane domain
D) a single nucleotide deletion in an exon coding for an active site
E) a frameshift mutation one codon away from the 3' end of the nontemplate strand
Answer: D) a single nucleotide deletion in an exon coding for an active site
Explanation:
Deletion or insertion of a single nucleotide in an axon coding for an active site is called frameshift mutation.
The sequence of codons is read during translation, in order to synthesize a amino acids chain and form a protein from the nucleotide sequence. Frameshift mutations occur when the usual codon sequence is broken by the deletion or addition of one or more nucleotides. For example, if only one nucleotide is removed from the axon sequence during the RNA splicing process, then there will be a disrupted reading frame for all codons before and after the mutation. This may result in several incorrect amino acids being introduced into the protein. Disruption in protein sequence will cause phenotypic change.
Hence, the correct option is D) a single nucleotide deletion in an exon coding for an active site
.
Answer:
A friend is a person whom one knows and with whom one has a bond of mutual affection, typically exclusive of sexual or family relations.
Answer:
be part of the cell signaling process
Explanation:
Glycoproteins and glycolipids are proteins and lipids with carbohydrate chain attached to it. They are an important component of the cell membrane with many roles:
- stabilizing membrane structure-because of their ability to bind water molecules via hydrogen bonds
- cell signaling-they are often membrane receptors for the hormones and neurotrasmitters
- cell attachment (adhesion)-for the connection between cells
- cell recognition-they can act as antigens on the cell surface (immune role)
It Is called, a mirror image or reflection.