1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
2 years ago
15

How many cars can be washed with 1 gallon of soap if 100oz Can wash 11 cars?

Mathematics
1 answer:
sergey [27]2 years ago
6 0

Answer: 14 cars.

Step-by-step explanation:

A car can be washed with : 100/11 oz.

1 gallon=128 oz.

Hence,

\displaystyle\\\frac{128}{\frac{100}{11} } =\frac{128*11}{100} =\frac{1408}{100} =14,08\ (cars).

You might be interested in
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
2 years ago
The amount A of the radioactive element radium in a sample decays at a rate proportional to the amount of radium present. Given
slavikrds [6]

Answer:

a) \frac{dm}{dt} = -k\cdot m, b) m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }, c) m(t) = 10\cdot e^{-\frac{t}{2438.155} }, d) m(300) \approx 8.842\,g

Step-by-step explanation:

a) Let assume an initial mass m decaying at a constant rate k throughout time, the differential equation is:

\frac{dm}{dt} = -k\cdot m

b) The general solution is found after separating variables and integrating each sides:

m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }

Where \tau is the time constant and k = \frac{1}{\tau}

c) The time constant is:

\tau = \frac{1690\,yr}{\ln 2}

\tau = 2438.155\,yr

The particular solution of the differential equation is:

m(t) = 10\cdot e^{-\frac{t}{2438.155} }

d) The amount of radium after 300 years is:

m(300) \approx 8.842\,g

4 0
3 years ago
Read 2 more answers
Do the ratios form a proportion? Explain how you arrived at your answer. 9/6 and 156/104​
sattari [20]
9:6,9/6, 9x6 156/104 , 156:104 , 156x104 because there the same thing but different signs
8 0
3 years ago
The table below shows the amount of money needed to but certain amounts of fabric.
Sergeeva-Olga [200]

Answer:

21

Step-by-step explanation:

3 0
3 years ago
Answer the below 20points<br><br><br><br><br><br><br> If you dont know dont answer pls
Rus_ich [418]

Answer:

D

Step-by-step explanation:

Substitute the f(x) and g(x) into f/g

\frac{\sqrt[3]{3x} }{5x+2}

To find the domain,

Get the denominator of the fraction so 5x + 2 and equal it to 0 and find x

5x + 2 = 0

5x = -2

x = \frac{-2}{5}

Therefore it's D

8 0
2 years ago
Other questions:
  • Equivalent fractions for 3/5
    7·1 answer
  • Waats 10+1 im in fith grade and i dont know it.
    10·1 answer
  • After dinner, your aunt serves slices of apple pie. Would you rather have a slice with a central angle equal to
    9·2 answers
  • Alia wants to buy enough pizza so that people will not be hungry ,and wants to have the least amount of pizza left over. How man
    9·2 answers
  • 4x-1=5x+11<br> what is the soultion
    8·2 answers
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D%20%2F%20%28-4%29%20-%20%28%5Cfrac%7B1%7D%7B6%7D%20-%20%5Cfrac%7B8%7D%7B6
    6·2 answers
  • Plz someone explain it
    10·1 answer
  • What is 3,024 divide by 336
    11·2 answers
  • Subtract these polynomials. (x2 + 5x + 2) – (5x2 – x – 2) =
    8·1 answer
  • Mr. Adams asked two random groups of 20 students each how many minutes they spent playing video games last night. The interquart
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!