Answer:
The answer is "
"
Step-by-step explanation:


square the above equation:


One foot is equal to 12 inches, so they are both the same length.
let's change some the 0.1 to say 1/10, just the fraction version of it.

![\bf \cfrac{-10x-1}{-10x^3-x^2}\implies \cfrac{-10\left( \frac{1}{10} \right)-1}{-10\left( \frac{1}{10} \right)^3-\left( \frac{1}{10} \right)^2}\implies \cfrac{-1-1}{-\frac{1}{100}-\frac{1}{100}}\implies \cfrac{-2}{\frac{-2}{100}} \\\\\\ \cfrac{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\cdot \cfrac{100}{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 100](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B-10x-1%7D%7B-10x%5E3-x%5E2%7D%5Cimplies%20%5Ccfrac%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29-1%7D%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E3-%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Ccfrac%7B-1-1%7D%7B-%5Cfrac%7B1%7D%7B100%7D-%5Cfrac%7B1%7D%7B100%7D%7D%5Cimplies%20%5Ccfrac%7B-2%7D%7B%5Cfrac%7B-2%7D%7B100%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B100%7D%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Cimplies%20100)
when checking an absolute value expression, we do the one-sided limits, since an absolute value expression is in effect a piecewise function with ± versions, so for the limit from the left we check the negative version.
Answer:
See below.
Step-by-step explanation:
the one on the left area is 104
the one on the right area is 19.5
He can either measure the third side length, apply the Pythagorean theorem to find the height of the triangle, and then calculate the area, or he can find the measure of the included angle between the known side lengths and use trigonometry to express the height of the triangle and then determine the
area of the triangle