Answer:
The boat's price before the reduction was $ 29,000.
Step-by-step explanation:
Given that after a 13% price reduction, a boat sold for $ 25,230, to determine what was the boat's price before the reduction, the following calculation must be performed:
100 - 13 = 87
87 = 25230
100 = X
100 x 25 230/87 = X
2523000/87 = X
29000 = X
Therefore, the boat's price before the reduction was $ 29,000.
Frist we need to find the mean of both so
1.55
2.67
then we make a number graph and see how mant place does it take to get to them from 0 67and55/by them selfs = 1.2(rounded)
1.2 is you answer
The quadratic formula is -b + or - the square root of b squared - 4 times the a value and c value over 2a. So the roots would be -1.354249 and -6.645751. I believe these are the roots.
Answer: Cool
Step-by-step explanation:
Greg is working on a school project
Answer:
1. Opposite
2. angle-side-angle criterion
Step-by-step explanation:
Since ABCD is a parallelogram, the two pairs of <u>(opposite)</u> sides (AB¯ and CD¯, as well as AD¯ and BC¯) are congruent. Then, since ∠9 and ∠11 are vertical angles, it can be concluded that ∠9≅∠11. Since ABCD is a parallelogram, AB¯∥CD¯. Since ∠2 and ∠5 are alternate interior angles along these parallel lines, the Alternate Interior Angles Theorem allows that ∠2≅∠5. Since two angles of △AEB are congruent to two angles of △CED, the Third Angles Theorem supports that ∠8≅∠3. Therefore, using the <u>(angle-side-angle criterion)</u>, it can be stated that △AEB≅△CED. Then, applying the definition of congruent triangles, it can be stated that AE¯≅CE¯, which makes E the midpoint of AC¯. Use a similar argument to prove that △AED≅△CEB; then it can be concluded that E is also the midpoint of BD¯. Since the midpoint of both line segments is the same point, the segments bisect each other by definition. Match each number (1 and 2) with the word or phrase that correctly fills in the corresponding blank in the proof.
A parallelogram posses the following features:
1. The opposite sides are parallel.
2. The opposite sides are congruent.
3. It has supplementary consecutive angles.
4. The diagonals bisect each other.