1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
2 years ago
7

If

Formula1" title="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" alt="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" align="absmiddle" class="latex-formula">, then prove that \mathrm {(x^{2} +1)y_{2} +x y_{1} - m^{2}y = 0}.
Note : y₁ and y₂ refer to the first and second derivatives.
Mathematics
1 answer:
Harman [31]2 years ago
8 0

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

You might be interested in
A poker hand consisting of 9 cards is dealt from a standard deck of 52 cards. Find the probability that the hand contains exactl
Andrew [12]

Answer: \dfrac{^{12}C_{6}\times^{40}C_3}{^{52}C_9} or  \dfrac{228}{91885} .

Step-by-step explanation:

Given : A poker hand consisting of 9 cards is dealt from a standard deck of 52 cards.

The total number of cards in a deck 52

Number of faces cards in a deck = 12

Number of cards not face cards = 40

The total number of combinations of drawing 9 cards out of 52 cards = ^{52}C_9

Now , the combination of 9 cards such that exactly 6 of them are  face cards =  ^{12}C_{6}\times^{40}C_3

Now , the probability that the hand contains exactly 6 face cards will be :-

\dfrac{^{12}C_{6}\times^{40}C_3}{^{52}C_9}

=\dfrac{\dfrac{12!}{6!6!}\times\dfrac{40!}{3!37!}}{\dfrac{52!}{9!\times43!}}\ \ [\because\ ^nC_r=\dfrac{n!}{r!(n-r)!}]\\\\=\dfrac{228}{91885}

Hence, the probability that the hand contains exactly 6 face cards. is  \dfrac{228}{91885} .

6 0
3 years ago
Someone plz help me 1-1\2c=6
GarryVolchara [31]

1 - 1/2c = 6

1 -1 - 1/2c = 6 -1 (subtract 1 on both sides)

-1/2c = 5 (next do the inverse operation)

c = 5 ÷ 1/2

c = -10

to check your answer substitute the value of c in the equation;

1- 1/2c = 6

1- 1/2(-10) = 6

1 + 5 = 6

6 =6



6 0
3 years ago
Can someone please answer. There is only one problem. There is a picture. Thank you!!!
Rainbow [258]
The number of permutations of the 25 letters taken 2 at a time (with repetitions) is:25^{2}
The number of permutations of the 9 digits taken 4 at a time (with repetitions) is:
9^{4}
Each permutation of letters can be taken with each permutation of digits, therefore the total number of possible passwords is:
25^{2}\times 9^{4}=4,100,625

6 0
3 years ago
Read 2 more answers
What is the solution set for the equation square root 5x+29=x+3?
galben [10]
X would equal -6.5. I hope this helps.
8 0
3 years ago
Its only one math question show right steps then get brainliest and right answer ofc
valkas [14]

Step-by-step explanation:

equation.

2(m+10)=4(m−15)

(2)(m)+(2)(10)=(4)(m)+(4)(−15)(Distribute)

2m+20=4m+−60

2m+20=4m−60

Step 2: Subtract 4m from both sides.

2m+20−4m=4m−60−4m

−2m+20=−60

Step 3: Subtract 20 from both sides.

−2m+20−20=−60−20

−2m=−80

Step 4: Divide both sides by -2.

−2m−/2=−80/−2

m=40

4 0
3 years ago
Read 2 more answers
Other questions:
  • A motorboat travels 48 miles down a river in the same time it takes to travel 32 miles up the river. If the rate of the current
    10·1 answer
  • One cubic millimeter of Mrs. Murphy's blood contains about 5,000,000 red blood cells. There are about 4,900,000 cubic millimeter
    12·1 answer
  • If you know the diameter of a circle, which statement describes how to find the area?
    5·2 answers
  • HELPPPPPPP PLSSSSSSSSS
    12·1 answer
  • Order the numbers from least to greatest. List the numbers as your final answer. 4, 7, -2, 25, 49, 63, 13, -22, 19, -13, 4/4, 34
    15·2 answers
  • If f(x) = 2x and g(x) = sqrt x,what is the domain of (fog)(x)?<br> HELP
    14·1 answer
  • 30 points Please help
    14·1 answer
  • What is the value of x?
    8·1 answer
  • The y -intercept of the line whose equation is x - y = -1 is<br><br> 0<br> 1<br> -1
    7·1 answer
  • Christine exercises more than 40 minutes per day.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!