1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
2 years ago
7

If

Formula1" title="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" alt="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" align="absmiddle" class="latex-formula">, then prove that \mathrm {(x^{2} +1)y_{2} +x y_{1} - m^{2}y = 0}.
Note : y₁ and y₂ refer to the first and second derivatives.
Mathematics
1 answer:
Harman [31]2 years ago
8 0

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

You might be interested in
Find the least common denominator between the two fractions. and 2 12 6
SSSSS [86.1K]

The least common denominator is 2

5 0
3 years ago
What is the probability of rolling a 4 on a single sided die and then rolling a 6?
Rzqust [24]

Answer:

If it is a six-sided die then it has the probability of 1/6 or .16

Step-by-step explanation:

4 0
3 years ago
2x + y = 2<br><br> x – 2y = -4<br><br> what is x and y?
sergiy2304 [10]

Answer:

x = 0

y = 2

Step-by-step explanation:

2x + y = 2 (Multiply by 2)

x – 2y = -4

4x + 2y = 4

x – 2y = -4

5x = 0

x = 0

2x + y = 2

2(0) + y = 2

0 + y = 2

y = 2

5 0
3 years ago
48, 32 need help to awnser
Gala2k [10]

Answer:

ca ul plz tell what's the question

4 0
3 years ago
Read 2 more answers
PLEASE HELP!!!!!!ASAPPPP
sergij07 [2.7K]
3^2 goes onto the left side of the triangle
5^2 goes onto the bottom
x^ goes on the slant part of the triangle
5 0
3 years ago
Other questions:
  • A concert is being held in your hometown. 1500 tickets are sold. Adult tickets are $10.50 and child’s tickets are $7.50. If a to
    14·1 answer
  • What’s 2(x+6)= <br><br> Somebody plz plz plz help ASAP !!!
    10·2 answers
  • How to use scale factor to find the missing dimension
    8·1 answer
  • The price of an item yesterday was
    15·2 answers
  • What value of x makes this equation true? <br> 50x - 38 = 55x - 98
    13·1 answer
  • Clayton uses 3/4 of a bottle of hot sauce for every batch of salsa he makes. Yesterday, he used 2 1/4 bottles of hot sauce. How
    6·1 answer
  • A particular pizza store models their pizza sales based on their price. They find that at the original price of $5 per slice, th
    5·2 answers
  • +<br> 6<br> [ + 1<br> ○ 6<br> 0 1<br> 0 3<br> 0 3
    11·1 answer
  • Enter the fraction as a decimal
    12·2 answers
  • Given f (x) = 2x - 10 forwhichvalueofxthat f (x) = -12
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!