1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
2 years ago
7

If

Formula1" title="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" alt="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" align="absmiddle" class="latex-formula">, then prove that \mathrm {(x^{2} +1)y_{2} +x y_{1} - m^{2}y = 0}.
Note : y₁ and y₂ refer to the first and second derivatives.
Mathematics
1 answer:
Harman [31]2 years ago
8 0

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

You might be interested in
What is the average rate of change from x=0 to x=5
zmey [24]
80-40/5-0=40/5=8 through the slope formula
6 0
3 years ago
Read 2 more answers
3. The breaking apart of rock by physical means is
babunello [35]

Answer:

Weathering

Step-by-step explanation:

Weathering is the physical and chemical breakdown of rock at the earth's surface.  The physical breakdown of rock involves breaking rock down into smaller pieces through mechanical weathering processes. These processes include abrasion, frost wedging, pressure release (unloading), and organic activity.

7 0
3 years ago
Read 2 more answers
Integral of of sin x/cosˆ2 x
marin [14]

Answer:

\sec x + c

Step-by-step explanation:

\int \frac{ \sin \: x}{ { \cos}^{2}x }  \: dx \\  \\  =  \int \frac{ \sin \: x}{ { \cos}x } . \frac{ 1}{ { \cos}x } \: dx \\  \\  =  \int  \tan x . \sec  x \: dx \\  \\  =  \sec x + c

7 0
3 years ago
If g(x) = (7x3 - 1)14(x2 + 50)49, what is g '(x)? a [14(7x3 - 1)13][49(x2 + 50)48] b14(7x3 - 1)13(21x2) + 49(x2 + 50)48(2x) c 14
Yanka [14]
<span>b.14(7x3 - 1)13(21x2) + 49(x2 + 50)48(2x)</span>
5 0
3 years ago
Response Question
Paha777 [63]

Answer:

The right solution is "3.29, 3.57".

Step-by-step explanation:

Seems that the given problem is incomplete. Below is the attachment of the complete and appropriate query.

<u>The given values are</u>:

Randomly selected adults,

n = 105

Mean,

\bar{x} = 3.42

Standard deviation,

s = 0.75

Now,

At 95% confidence level if given by,

=  \bar{x} \ \pm \ Z_{\frac{\alpha}{2} }\times \frac{s}{\sqrt{n} }

On putting the given values, we get

=  3.42 \ \pm \ Z_{\frac{0.05}{2} }\times \frac{0.75}{\sqrt{105} }

=  3.42 \ \pm \ 1.96\times 0.073

=  3.42 \ \pm \ 0.143

=  3.29, 3.57

3 0
3 years ago
Other questions:
  • Let v1 =(-6,4) and v2=(-3,6) compute the following what i sthe angle between v1 and v2
    7·1 answer
  • Which graph does not represent a function? No need to explain. Thank you.
    8·1 answer
  • Pwease help!! i need help to put the answers in the box c:
    11·1 answer
  • What is the value of 7/8 ÷ 11/12
    9·2 answers
  • True or false To increase the size os an drawing we multiply the side lengths by a fraction​
    13·1 answer
  • Does anyone know how to do these maths question???
    7·1 answer
  • PLEASEEE HELP BIG FINALS TEST !!!! :( plssssss
    7·1 answer
  • The value of x must be greater than ________.<br> 0<br> 1<br> 3<br> 7
    6·2 answers
  • Please help me with this!
    6·1 answer
  • Given the equation y= 1/2x + 9, what is the y-intercept?​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!