1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
1 year ago
7

If

Formula1" title="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" alt="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" align="absmiddle" class="latex-formula">, then prove that \mathrm {(x^{2} +1)y_{2} +x y_{1} - m^{2}y = 0}.
Note : y₁ and y₂ refer to the first and second derivatives.
Mathematics
1 answer:
Harman [31]1 year ago
8 0

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

You might be interested in
Which fraction has a value that's equal to 7/8
S_A_V [24]
There's a bunch of them like if you simplify you could get 3/4.I'll give you some more.

Examples:14/16 21/24 28/32 and 35/40.

My brain was getting tired to think...but there's more.

Hope this helps :D
7 0
3 years ago
What is 3/4f + 5 = -5
anyanavicka [17]
<span>3/4f + 5 = -5
Subtract 5 from both sides
3/4f= -10
Divide both sides by 3/4 so that the only thing remaining on the left side is the variable f.
Final Answer: f= 40/3 or 13 1/3 *Both answers are equivalent to each other.</span>
5 0
3 years ago
Read 2 more answers
If B is the midpoint of AC, solve for x, and find the lengths of AB, BC, and AC.
makvit [3.9K]

Answer:

49, 49 , 98

Step-by-step explanation:

AC = AB + BC = 2AB

  • 3x - 31 = 2(x+6)
  • 3x - 31 = 2x + 12
  • 3x - 2x = 12 +31
  • x = 43

AB= BC = x + 6 = 43 + 6 = 49

AC = 2AB = 2* 49 = 98

7 0
3 years ago
Determine the slope of the line passing through (-8,-5) and (-10,-9)
nikklg [1K]

Answer:

2

Step-by-step explanation:

y1-y2/x1-x2

6 0
2 years ago
Read 2 more answers
Sam drove 320 miles in 2.5 hours, how long will it take to drive 500 at the same rate (speed)?
marishachu [46]

Answer:

D = (55)(4.5)  

425 = 60 T  

200 = R (2.5)  

4.6 hours  

59 mph  

217 miles




Step-by-step explanation:


6 0
3 years ago
Other questions:
  • when a decimal is written in word form, what indicates that the equivalent form is a mixed number and not a fraccion? Explain.
    11·1 answer
  • Explain how you can mentally determine whether there is a remainder when 18,450 is divided by 6
    8·1 answer
  • What is the area of this trapezoid?
    12·2 answers
  • The number of inches in g feet ?
    6·1 answer
  • Josey got an answer of 167 r 4 for 3÷505. explain and correct joseys error
    13·2 answers
  • Given: m∠A = m∠C = 90° AB ║ DC Prove: ∆ABD ≅ ∆CBD
    9·1 answer
  • I don’t really understand this can someone help please?
    15·2 answers
  • Use the inequalities to answer the following question.
    15·2 answers
  • Someone answer this for me pls
    10·2 answers
  • What are the steps to my answer?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!