1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
1 year ago
7

If

Formula1" title="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" alt="\mathrm {y = (x + \sqrt{1+x^{2}})^{m}}" align="absmiddle" class="latex-formula">, then prove that \mathrm {(x^{2} +1)y_{2} +x y_{1} - m^{2}y = 0}.
Note : y₁ and y₂ refer to the first and second derivatives.
Mathematics
1 answer:
Harman [31]1 year ago
8 0

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

You might be interested in
David's overtime rate is $20. This week, he worked 3 overtime hours. How much will he get paid for overtime?
vichka [17]

Answer:

$60

Step-by-step explanation:

3x20=60

3 0
3 years ago
Read 2 more answers
Find all missing angles
AleksandrR [38]

Answer:

a = 145

b = 35

c = 145

d = 70

e = 70

f = 110

g = 55

h = 125

i = 55

j = 50

k = 70

l =110

m = 50

n = 60

o = 70

p = 23

q = 89

r = 68

s = 157

t = 112

u = 48

v = 132

w = 132

x = 48

y = 48

z = 132

A = 48

B = 94

C = 86

D = 94

E = 47

F = 133

Step-by-step explanation:

I'm fairly certain these are all correct... like 82% sure

3 0
3 years ago
1 1/18 + 3 1/18 + 1 2/9 + 1 2/9
Misha Larkins [42]

Answer:

6.55555555556

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Application
user100 [1]

He needs to run with approximately 6429 for a distance of 9 km

<h3>How to determine the number of strides?</h3>

The given parameters are:

Length of stride = 1.4 m

Distance for marathon = 9 km

The number of strides needed is then calculated as:

Number of stride = Distance for marathon/Length of stride

Substitute the known values in the above equation

Number of stride = 9km/1.4m

Convert km to m

Number of stride = 9000m/1.4m

Evaluate the quotient

Number of stride = 6428.57143

Approximate the estimate

Number of stride = 6429

Hence, he needs to run with approximately 6429 for a distance of 9 km

Read more about quotients at:

brainly.com/question/8952483

#SPJ1

6 0
2 years ago
What is an estimate of 9.7 times 0.4
andrezito [222]
When I did the math I came up as 3.88 but if you have to round up it wound be 4 or 3.9
4 0
3 years ago
Read 2 more answers
Other questions:
  • If you pick a card at random from a well shuffled deck, what is the probability that your card is NOT a spade or a king
    5·1 answer
  • Given the literal equation ab/a+b = c , with b = –1 + a, what is the value of c if a = 5?
    6·2 answers
  • 8-4d=12 what is d equal to ?
    6·1 answer
  • The expression cos 42° in terms of sine
    14·1 answer
  • Please help me........
    10·1 answer
  • Proving the Converse of the Parallelogram Side Theorem
    15·2 answers
  • Help need done quick pls.
    15·1 answer
  • You can buy 5 cans for green beans at the Village Market-for-$4.00- You can buy 10 of the same cans of beans at Sam's Club for $
    14·2 answers
  • How many two-digit numbers are there in which the tens digit is greater than<br> the ones digit?
    7·1 answer
  • 3) Find the value of FD. bited F 12 12 13x - 16 E 4x+11 D​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!