1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
2 years ago
10

Question in pictures

Mathematics
1 answer:
yan [13]2 years ago
7 0

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

You might be interested in
Use the unit circle to evaluate the followingHow do I solve this problem?
Ilya [14]

Notice that:

\cos (\frac{4\pi}{3})=\cos (\pi+\frac{\pi}{3})\text{.}

Recall that:

\cos (\pi+x)=-\cos (x)\text{.}

Therefore:

\cos (\frac{4\pi}{3})=-\cos (\frac{\pi}{3})=-\frac{1}{2}\text{.}

Answer:

cos(\frac{4\pi}{3})=-\frac{1}{2}\text{.}

6 0
1 year ago
Evaluate 10,5p + 9,71 when p = 6 and r=7<br> 10.5() +9,7<br> 467.9<br> 10.50 +97([] = []+679
wlad13 [49]
I wish I could help sorry
4 0
3 years ago
Triangles A B C and R M Q are shown. Angles C A B and M R Q are 29 degrees. Angles A B C and R M Q are 116 degrees. What additio
Svetlanka [38]

Answer:

Therefore, the two options for triangles to be congruent using AAS are

1. BC ≅ MQ       (Additional information)

2. AC ≅ RQ       (Additional information)

Step-by-step explanation:

Given:

∠CAB =∠MRQ = 29°

∠ABC = ∠RMQ = 116°

To Prove:

Δ ABC ≅ ΔRMQ  by AAS congruence test which additional information is required

Proof:

<u>Case 1.</u>

In  Δ ABC and Δ RMQ

∠CAB =∠MRQ = 29°      ……….{Given}

∠ABC = ∠RMQ = 116°     ..……..{Given}

BC ≅ MQ                        ……….{Additional information required}

Δ ABC ≅ Δ RMQ ….{By Angle-Angle-Side congruence test}

<u>Case 2.</u>

In  Δ ABC and Δ RMQ

∠CAB =∠MRQ = 29°      ……….{Given}

∠ABC = ∠RMQ = 116°     ..……..{Given}

AC ≅ RQ                        ……….{Additional information required}

Δ ABC ≅ Δ RMQ ….{By Angle-Angle-Side congruence test}

Therefore, the two options for triangles to be congruent using AAS are

1. BC ≅ MQ       (Additional information)

2. AC ≅ RQ       (Additional information)

3 0
4 years ago
Read 2 more answers
The sequence that proves shape I is similar to shape II when applied to shape I is a reflection across the x-axisy-axis, followe
Ymorist [56]

Answer:

a. X-axis

b. 6

c. 2

d.2

8 0
3 years ago
Read 2 more answers
out of 24 students, 6 preferred to use pastels for their portraits while 4 preferred to use watercolours watercolours. what perc
notka56 [123]

Answer:

4% used pastels.

Step-by-step explanation:,,

green is the most

5 isnt blue.green,yello or red

3 0
3 years ago
Other questions:
  • Combining like terms<br><br> simplify the expression<br> n - 10 + 9n - 3
    15·2 answers
  • Original price is 149.99 discount is 10%
    13·1 answer
  • Question Help
    15·1 answer
  • Twenty years ago a small town in Texas had a population of 10,000. The population has increased 8% each year since then. What is
    14·2 answers
  • What is the measure of
    14·2 answers
  • A bike shop has 11 red bikes, 3 blue bikes, 4 orange bikes, and 12 silver bikes. For every 1 orange bike, there are 3 what? Choo
    7·2 answers
  • A survey went out asking consumers about their shopping habits. The results showed that
    13·2 answers
  • Please help me I will mark as the best answer please
    15·1 answer
  • Pls help me on this question look at the image.
    10·1 answer
  • PLESE HELP ILL GIVE BRAINLIEST!,!!!!!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!