1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
2 years ago
10

Question in pictures

Mathematics
1 answer:
yan [13]2 years ago
7 0

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

You might be interested in
If you can buy 1⁄4 pizza for 5 dollars, how much can you purchase for 8 dollars? Write your answer as a fraction.
kap26 [50]

Answer:

2/5 pizza

Step-by-step explanation:

If 1/20 is one dollar, you can buy 8/20, that is 2/5 pizza

5 0
3 years ago
The diagonals of a rumbus are 21m and 32m what is area of the rombus
Liula [17]
Consider this option:
1. formula is: S=0.5*d₁*d₂, where d₁;d₂ - the diagonals of the rhombus.
2. substituting the values into the formula: S=0.5*21*32=336 m².

answer: 336 m².
5 0
3 years ago
Read 2 more answers
Best answer gets brainliest!<br><br> What are some equivalent expressions of 6(m + 2 + 7m)?
bezimeni [28]

Answer:

See Explanation

Step-by-step explanation:

To write an equivalent expression, we can combine like terms. So m +7m is 8 and we get 6(8m+2).

Here are a few others:

48m+12

6(m+m+m+m+m+m+m+m+2)

3(16m+4)

6m+12+42m

6m+6m+6m+6m+6m+6m+6m+6m+2

and the list goes on...

3 0
3 years ago
Read 2 more answers
Three sets have 5, 10, 15 elements, respectively. How many elements can their union and intersection have?​
Degger [83]

Answer:

Union = 15

Step-by-step explanation:

Given

n(A) = 5; n(B) = 10; n(C) = 15

Solving (a): Possible union elements

This is the represented by element with the largest number of the sets

i.e.

Union = 15

Solving (b): Possible intersection elements

This is the represented by element with the least number of the sets

i.e.

Intersection = 5

6 0
3 years ago
Someone please help me will give BRAILIEST!!!!!!
Kipish [7]
The answer would be 15
6 0
4 years ago
Read 2 more answers
Other questions:
  • melissa runs a landscaping business. She has equipment and fuel for $343 per month. If she charges $46 for each lawn, how many l
    5·1 answer
  • Find the area of the figure shown below and type your result in the empty box.
    15·2 answers
  • A rectangular prism is 7 inches long and 6 inches wide. Its volume is 336 cubic inches. What is the height of the rectangular pr
    11·1 answer
  • A baker needs 2 pounds of flour and 3 sticks of butter to
    6·2 answers
  • Solve for x and y y=2x+1 y=x-1
    12·1 answer
  • Consider the points ​
    10·1 answer
  • 1. The population of a small town was 2500 in 2005. The population
    10·1 answer
  • Charlie saves $22.25 each month for 6 months. In the seventh month, he only saves $10.30. How much money will Charlie have saved
    6·2 answers
  • Ms. Owens has some pencils . She give 5 of them away. Now she has 13 pencils left. How many pencils did she start with?
    12·1 answer
  • T divided by -4 equals 9
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!