1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
2 years ago
10

Question in pictures

Mathematics
1 answer:
yan [13]2 years ago
7 0

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

You might be interested in
At the grocery store, Emily notices that it costs
Dmitriy789 [7]

Answer:

4.34

Step-by-step explanation:

2.48/40=0.062 per ounce

0.062 x 70 = 4.32 for 70 ounces

4 0
3 years ago
What is the sum of a geometric sequence 1,3,9,... if there are 14 terms
Maksim231197 [3]
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323.
If this is the proper sequence pattern, we add up all the numbers to get a sum.
The total sum is 2391457.
7 0
3 years ago
Which choice is equivalent to the expression shown below? -3(3y-2x) +2(5x-4y)
kap26 [50]

Answer:

-17y + 16x

Step-by-step explanation:

-3(3y - 2x) + 2(5x - 4y) = -9y + 6x + 10x - 8y = -17Y + 16X.

If it is helpful, plz give me Brainliest.

7 0
3 years ago
Perform the indicated operation. X^3+43-49x-7x^2 divides by x^2-49
BaLLatris [955]

Answer:

The quotient is: x-7

and remainder is : -300

Step-by-step explanation:

We need to divide X^3+43-49x-7x^2 by x^2-49

First arrange the term  X^3+43-49x-7x^2 in terms of ascending order of x.

Arranging we get:

x^3 - 7x^2 -49x + 43 \  x^2-49

The division steps are shown in figure attached.

The quotient is: x-7

and remainder is : -300

4 0
3 years ago
What are the domain restrictions of the expression g2−7g+10g3−6g2+8g ? Select each correct answer.
Sauron [17]

Answer with Step-by-step explanation:

We are given that an expression

f(g)=\frac{g^2-7g+10}{g^3-6g^2+8g}

We have to find domain restriction of the given function.

f(g)=\frac{(g-5)(g-2)}{g(g-4)(g-2)}

Domain restriction means : It is that value of x when substitute in function then  function will  not defined.

It means it is that values which makes denominator zero.

From given function we can see that

When substitute g=0 then it makes denominator zero.

Hence, the function is not defined at g=0

Substitute g=4

Then, it makes denominator zero.

Hence, function is not defined  at g=4

Substitute g=2

Then,it  makes denominator zero.

Hence, function is not defined  at g=2

Therefore, the function is defined for all values of g except g=0, g=2 and g=4

5 0
3 years ago
Other questions:
  • Which angles are right?<br>Check all that apply.​
    14·1 answer
  • What is the product? 6 [ 4 -2 1 7 3 0]
    11·1 answer
  • Forty more than twice malia's age is 64
    13·2 answers
  • The perimeter of rectangular park is 450m.the length of the sides is in the ratio 3:2.find the area of the rectangle
    15·1 answer
  • What's the answer Will award brainiest
    11·2 answers
  • Help with geometry..............................
    6·1 answer
  • At the beginning of the snowstorm, Olivia had 4 inches of snow on her lawn. The snow then began to fall at a constant rate of 1
    15·2 answers
  • 8. A person throws a ball as high as he can and it reaches a height of 25
    9·1 answer
  • I need help on this 8th grade math this is due tomorrow.
    15·1 answer
  • Find the highest common factor<br>​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!