The answer choices are sufficiently far apart that you can work this backward. The sum will be ...
236,196*(1 + 1/3 + 1/9 + 1/27 + ...)
so a reasonable estimate can be given by an infinite series with a common ratio of 1/3. That sum is
236,196*(1/(1 - 1/3)) = 236,196*(3/2)
Without doing any detailed calculation, you know the best answer choice is ...
354,292
_____
There are log(236196/4)/log(3) + 1 = 11 terms* in the series, so the sum will be found to be 4(3^11 -1)/(3-1) = 2*(3^11-1) = 354,292.
Using the above approach (working backward from the last term), the sum will be 236,196*(1-(1/3)^11)/(1-(1/3)) = 236,196*1.49999153246 = 354,292
___
* If you just compute log(236196/4)/log(3) = 10 terms, then your sum comes out 118,096--a tempting choice. However, you must realize that the last term is larger than this, so this will not be the sum. (In fact, the sum is this value added to the last term.)
So, Juan is 3rd, and Tami has at least 2 ppl in front of her, she can't be third because Juan is, so she's fourth. Kari is not 1st, leaving the only space to be 2nd from Kari.
The domain of a function f(x) is a set of all values for which the function is defined. The range of is a set of all values that f takes.
Step-by-step explanation:
Q.282 +15% +750
<em><u>282 +15 </u></em><em><u>/</u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u>+750</u></em>
<em><u>2</u></em><em><u>8</u></em><em><u>2</u></em><em><u>+</u></em><em><u>3</u></em><em><u>/</u></em><em><u>2</u></em><em><u>0</u></em><em><u>+</u></em><em><u>7</u></em><em><u>5</u></em><em><u>0</u></em>
<em><u>1</u></em><em><u>0</u></em><em><u>3</u></em><em><u>2</u></em><em><u>+</u></em><em><u>3</u></em><em><u>/</u></em><em><u>2</u></em><em><u>0</u></em>
<em><u>2</u></em><em><u>0</u></em><em><u>6</u></em><em><u>4</u></em><em><u>3</u></em><em><u>/</u></em><em><u>2</u></em><em><u>0</u></em>