Consider rectangular box with
- length x units (x≥0);
- width 3 units;
- height (8-x) units (8-x≥0, then x≤8).
The volume of the rectangular box can be calculated as

In your case,

Note that maximal possible value of the height can be 8 units (when x=0 - minimal possible length) and the minimal possible height can be 0 units (when x=8 - maximal possible length).
From the attached graph you can see that the greatest x-intercept is x=8, then the height will be minimal and lenght will be maximal.
Then the volume will be V=0 (minimal).
Answer: correct choices are B (the maximum possible length), C (the minimum possible height)
Answer:
25
Step-by-step explanation:
The number that needs to be added is the square of half the x-coefficient:
(-10/2)^2 = 25
_____
Adding that gives ...
(x -5)^2 = 32
x = 5 ± 4√2
Answer:
Step-by-step explanation:
2x-6+4x=6x-6
Hope this helps!

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
I think the answer is 5
Step-by-step explanation: