For this case, the first thing we must do is define variables:
x: number of pillowcases
y: number of sheets
We now write the system of equations:
2x + 5y = 40
x = 2y
Solving the system we have:
x = 8.9
y = 4.4
Answer:
The maximum number of pillowcases she could have purchased is:
x = 8 (spent less than $ 40)
Answer:
Exact Form:
x
=
64/21e
Decimal Form:
x
=
1.12115639
Step-by-step explanation:
Answer:
a = length of the base = 2.172 m
b = width of the base = 1.357 m
c = height = 4.072 m
Step-by-step explanation:
Suppose we want to build a rectangular storage container with open top whose volume is 12 cubic meters. Assume that the cost of materials for the base is 12 dollars per square meter, and the cost of materials for the sides is 8 dollars per square meter. The height of the box is three times the width of the base. What’s the least amount of money we can spend to build such a container?
lets call a = length of the base
b = width of the base
c = height
V = a.b.c = 12
Area without the top:
Area = ab + 2bc + 2ac
Cost = 12ab + 8.2bc + 8.2ac
Cost = 12ab + 16bc + 16ac
height = 3.width
c = 3b
Cost = 12ab + 16b.3b + 16a.3b = 12ab + 48b² + 48ab = 48b² + 60ab
abc = 12 → ab.3b = 12 → 3ab² = 12 → ab² = 4 → a = 4/b²
Cost = 48b² + 60ab = 48b² + 60b.4/b² = 48b² + 240/b
C(b) = 48b² + 240/b
C'(b) = 96b - 240/b²
Minimum cost: C'(b) = 0
96b - 240/b² = 0
(96b³ - 240)/b² = 0
96b³ - 240 = 0
96b³ = 240
b³ = 240/96
b³ = 2.5
b = 1.357m
c = 3b = 3*1.357 = 4.072m
a = 4/b² = 2.172m
Incorrect...Point on the line is (-x11, -y1) ... Opposite
Answer:
D. 4
Step-by-step explanation:
![[(p^2) (q^{-3}) ]^{-2}.[(p)^{-3}(q)^5] ^{-2}\\\\=[(p^2) (q^{-3}) \times(p)^{-3}(q)^5 ]^{-2}\\\\=[(p^{2}) \times(p)^{-3} \times (q^{-3}) \times(q)^5 ]^{-2}\\\\=[(p^{2-3}) \times (q^{5-3}) ]^{-2}\\\\=[(p^{-1}) \times (q^{2}) ]^{-2}\\\\=(p^{-1\times (-2)}) \times (q^{2\times (-2) }) \\\\=p^{2}\times q^{-4} \\\\= \frac{p^2}{q^4}\\\\= \frac{(-2)^2}{(-1)^4}\\\\= \frac{4}{1}\\\\= 4](https://tex.z-dn.net/?f=%20%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5D%5E%7B-2%7D.%5B%28p%29%5E%7B-3%7D%28q%29%5E5%5D%20%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%20%5Ctimes%20%28q%5E%7B-3%7D%29%20%5Ctimes%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2-3%7D%29%20%5Ctimes%20%28q%5E%7B5-3%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B-1%7D%29%20%5Ctimes%20%28q%5E%7B2%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%28p%5E%7B-1%5Ctimes%20%28-2%29%7D%29%20%5Ctimes%20%28q%5E%7B2%5Ctimes%20%28-2%29%20%7D%29%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Dp%5E%7B2%7D%5Ctimes%20q%5E%7B-4%7D%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7Bp%5E2%7D%7Bq%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B%28-2%29%5E2%7D%7B%28-1%29%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B4%7D%7B1%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%204)