Let
x ----------> the height of the whole poster
<span>y ----------> the </span>width<span> of the whole poster
</span>
We need
to minimize the area A=x*y
we know that
(x-4)*(y-2)=722
(y-2)=722/(x-4)
(y)=[722/(x-4)]+2
so
A(x)=x*y--------->A(x)=x*{[722/(x-4)]+2}
Need to minimize this function over x > 4
find the derivative------> A1 (x)
A1(x)=2*[8x²-8x-1428]/[(x-4)²]
for A1(x)=0
8x²-8x-1428=0
using a graph tool
gives x=13.87 in
(y)=[722/(x-4)]+2
y=[2x+714]/[x-4]-----> y=[2*13.87+714]/[13.87-4]-----> y=75.15 in
the answer is
<span>the dimensions of the poster will be
</span>the height of the whole poster is 13.87 in
the width of the whole poster is 75.15 in
To evaluate a function at a given input, you have to substitute every occurrence of the variable with that particular value.
So, for the first function, you have

The name of the variable is obviously irrelelvant, so the same goes for the second function:

Answer:
14, 28, 42, 56, and 70 are the first 5 common multiples of 14
20, 40, 60, 80, and 100 are the first 4 common multiples of 20
Answer: multiply each side then multiply the answer by 2
Step-by-step explanation: