Answer:
(A)The northern lighthouse is 8.2 miles closer than the southern lighthouse.
Step-by-step explanation:
The triangle attached represents the given problem.
First, let us determine the distance of the Boat from each of the lighthouse.
In Triangle ABC,
∠A+∠B+∠C=180 degrees
21+∠B+16=180
∠B=180-37=143 degrees.
Using Law of Sines
![\frac{a}{Sin A}=\frac{b}{Sin B}\\\frac{a}{Sin 21^0}=\frac{60}{Sin 143^0} \\\text{Cross Multiply}\\a*sin143=60*sin21\\a=60*sin21\div sin143\\a=35.73 miles](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7BSin%20A%7D%3D%5Cfrac%7Bb%7D%7BSin%20B%7D%5C%5C%5Cfrac%7Ba%7D%7BSin%2021%5E0%7D%3D%5Cfrac%7B60%7D%7BSin%20143%5E0%7D%20%5C%5C%5Ctext%7BCross%20Multiply%7D%5C%5Ca%2Asin143%3D60%2Asin21%5C%5Ca%3D60%2Asin21%5Cdiv%20sin143%5C%5Ca%3D35.73%20miles)
Similarly
![\frac{c}{Sin C}=\frac{b}{Sin B}\\\frac{c}{Sin 16^0}=\frac{60}{Sin 143^0} \\\text{Cross Multiply}\\c*sin143=60*sin16\\c=60*sin16\div sin143\\c=27.48 miles](https://tex.z-dn.net/?f=%5Cfrac%7Bc%7D%7BSin%20C%7D%3D%5Cfrac%7Bb%7D%7BSin%20B%7D%5C%5C%5Cfrac%7Bc%7D%7BSin%2016%5E0%7D%3D%5Cfrac%7B60%7D%7BSin%20143%5E0%7D%20%5C%5C%5Ctext%7BCross%20Multiply%7D%5C%5Cc%2Asin143%3D60%2Asin16%5C%5Cc%3D60%2Asin16%5Cdiv%20sin143%5C%5Cc%3D27.48%20miles)
Difference in Distance =35.73-27.48=8.25 miles
Therefore, the northern lighthouse is 8.2 miles closer than the southern lighthouse.
Answer:
I believe for the second one it's B, then for the third one it's D
Step-by-step explanation:
Oh also be careful w ur lunch # showing
3 9/10 + 4/5
39/10 + 4/5
39/10 + 8/10
47/10= 4 7/10