Exponential functions are related to logarithmic functions in that they are inverse functions. Exponential functions move quickly up towards a [y] infinity, bounded by a vertical asymptote (aka limit), whereas logarithmic functions start quick but then taper out towards an [x] infinity, bounded by a horizontal asymptote (aka limit).
If we use the natural logarithm (ln) as an example, the constant "e" is the base of ln, such that:
ln(x) = y, which is really stating that the base (assumed "e" even though not shown), that:

if we try to solve for y in this form it's nearly impossible, that's why we stick with ln(x) = y
but to find the inverse of the form:

switch the x and y, then solve for y:

So the exponential function is the inverse of the logarithmic one, f(x) = ln x
Answer:
36π in^2
Step-by-step explanation:
Area of a circle = π(6)^2 = 36π
Answer:
Eli ate 3/4 of the pizza
Step-by-step explanation:
1/2 = 2/4
2/4 + 1/4 = 3/4
The rate of change for the interval between 2 and 6 on the x-axis is 3.
Given
On a coordinate plane, a parabola opens up.
Solid circles appear on the parabola at (negative 4, 14), (negative 3, 9. 5), (negative 2, 6), (0, 2), (1, 1. 5), (2, 2), (4, 6), (5, 9. 5), (6, 14).
<h3>What is the rate of change?</h3>
A rate of change defines how one quantity changes in relation to another quantity.
The rate of change for the interval between 2 and 6 on the x-axis is;

Hence, the rate of change for the interval between 2 and 6 on the x-axis is 3.
To know more about Parabola click the link given below.
brainly.com/question/16549411
Answer:
○ 
Step-by-step explanation:
![\displaystyle \boxed{y = 3sin\:(2x + \frac{\pi}{2})} \\ y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{4}} \hookrightarrow \frac{-\frac{\pi}{2}}{2} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cboxed%7By%20%3D%203sin%5C%3A%282x%20%2B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%29%7D%20%5C%5C%20y%20%3D%20Asin%28Bx%20-%20C%29%20%2B%20D%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%20D%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%20%7CA%7C%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5Chookrightarrow%20%5Cboxed%7B-%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B2%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5Chookrightarrow%20%5Cboxed%7B%5Cpi%7D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7B2%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%203)
<em>OR</em>
![\displaystyle \boxed{y = 3cos\:2x} \\ y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cboxed%7By%20%3D%203cos%5C%3A2x%7D%20%5C%5C%20y%20%3D%20Acos%28Bx%20-%20C%29%20%2B%20D%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%20D%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%20%7CA%7C%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5Chookrightarrow%20%5Cboxed%7B%5Cpi%7D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7B2%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%203)
You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of <em>sine</em>, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of
in which you need to replase "cosine" with "sine", then figure out the appropriate C-term that will make the graph horisontally shift and map onto the <em>sine</em> graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY <em>REALLY</em> ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the <em>sine</em> graph [photograph on the right] is shifted
to the right, which means that in order to match the <em>cosine</em> graph [photograph on the left], we need to shift the graph BACKWARD
which means the C-term will be negative, and by perfourming your calculations, you will arrive at
So, the sine graph of the cosine graph, accourding to the horisontal shift, is
Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph WILL hit
from there to
they are obviously
apart, telling you that the period of the graph is
Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the <em>midline</em>. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at
in which each crest is extended <em>three units</em> beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.
I am delighted to assist you at any time.