Answer:
Explanation:
1. Write a program that declares an array named alpha with 50 components of the type double. Initialize the array so that the first 25 components are equal to the square of the counter (or index) variable and the last 25 components are equal to three times the index variable.
double alpha[50];
for (int i=0;i<25;i++)
{
alpha[i]=i*i;
alpha[i+25]=(i+25)*3;
}
2. Output the array so that exactly ten elements per line are printed.
for (int i=0;i<50;i++)
{
cout<<i+1<<". "<<alpha[i]<<" ";
if (((i+1)%10)==0)
{
cout<<endl;
}
}
3. Run your program again, but this time change the code so that the array is filled with random numbers between 1 and 100.
double alpha[50];
for (int i=0;i<50;i++)
{
alpha[i]=rand()%101;
}
for (int i=0;i<50;i++)
{
cout<<i+1<<". "<<alpha[i]<<" ";
if (((i+1)%10)==0)
{
cout<<endl;
}
}
4. Write the code that computes and prints the average of elements of the array.
double alpha[50],temp=0;
for (int i=0;i<50;i++)
{
alpha[i]=rand()%101;
temp+=alpha[i];
}
cout<<"Average :"<<(temp/50);
5. Write the code that that prints out how many of the elements are EXACTLY equal to 100.
double alpha[50],temp=0;
for (int i=0;i<50;i++)
{
alpha[i]=rand()%101;
if(alpha[i]==100)
{
temp++;
}
}
cout<<"Elements Exacctly 100 :"<<temp;
Please note: If you put each of above code to the place below comment it will run perfectly after compiling
#include <iostream>
using namespace std;
int main()
{
// If you put each of above code here it will run perfectly after compiling
return 0;
}
Answer:
All of the above
Explanation:
A local variable is a variable which is declared within a method or is an argument passed to a method, it scope is usually local (i.e. it is hidden from other method). it can also have the same name as a local variable in another method and it loses the values stored in them between calls to the method in which the variable is declared. So all the option listed above are correct.
Answer:
Always encrypt data never store anything in plain text someone could use wireshark to pull out a data packet and if the data is not encrypted, expect things to happen.
A computational instruction with operands is command so computational instructionis just a opcode.
B. opcode