Answer:
The DNA must be able to separate its two strands in order to be connected to the sliding clamp.
For this to occur, the action of the protein components: helicase and topoisomerase is necessary.
Explanation:
The sliding clamp is a protein that participates in DNA replication. This protein is responsible for forming a "ring" around the single strand of DNA, allowing the polymer DNA (DNA replicating enzyme) to be firmly suited to the strand and to be able to create the new DNA strands. The sliding clamp is also responsible for the DNA polymerase decoupling from the DNA at the end of replication.
For the sliding clamp to work correctly, it is necessary for the DNA to unravel and release its two strands. This process needs the help of the Helicase enzymes, which are responsible for breaking the hydrogen bonds that hold the two DNA strands together, and, for topoisomerase, which is the enzyme that prevents single strands of DNA from creating torsions in their extension.
Think about what a complex system a modern economy is. It includes all
production of goods and services, all buying and selling, all
employment. The economic life of every individual is interrelated, at
least to a small extent, with the economic lives of thousands or even
millions of other individuals. Who organizes and coordinates this
system? Who insures that, for example, the number of televisions a
society provides is the same as the amount it needs and wants? Who
insures that the right number of employees work in the electronics
industry? Who insures that televisions are produced in the best way
possible? How does it all get done?
Answer:
It would be C because of the history of the revolution.
I would say religious and racial discrimination.