1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
9

I need a quick good conclusion thank you

Mathematics
1 answer:
Debora [2.8K]3 years ago
8 0
You'll notice that 36's prime factors had 2 even, and none other had an even number of even prime factors. Therefore, if you have an even number of even prime factors, your square root will be rational given the data
You might be interested in
Convert this radical form to exponential form.
Elden [556K]

Answer:

I think it's 7.93725

I'm not sure if I did this correctly

3 0
3 years ago
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
1. Find the LCM of the given numbers.<br> 4 and 7
GuDViN [60]

Answer:

The LCM of (4,7) is 28

Step-by-step explanation:

7 0
2 years ago
PLEASE HELP
Nady [450]
The frequency for rolling a 3 would be 5 out of 100 

6 0
3 years ago
15-3(2+6 times -3) <br> What would this simplify to?
pickupchik [31]
-45 because of PEMDAS
8 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify using the distributive property, Show all work -2(x - 5) + 4(9 + x).
    12·1 answer
  • Can somebody help me please
    5·1 answer
  • PLZ HELP I NEED THIS TODAY!!!!Write an expression for the perimeter of the triangle shown below: A triangle is shown with side l
    13·1 answer
  • How do you find the area of a semicircle when the diameter is 10?
    6·2 answers
  • In a box of 25 external hard disks, there are 2 defectives. An inspector examines 5 of these hard disks. Find the probability th
    10·1 answer
  • Inverse Functions (please help)
    9·1 answer
  • I NEED HELP ASAP! 50 points:A national restaurant chain claims that their servers make an average of $12.85 in tips per hour, wi
    11·2 answers
  • 3(x+5)^2-12=0. What does x equal
    10·2 answers
  • 1) The graph of a quadratic f(x) intersects the x-axis at -2 and 10. What is a possible
    6·1 answer
  • Answer the following questions about the given net.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!