Hello :
note :
<span>
<span>an equation of the circle Center at the
A(a,b) and ridus : r is :
(x-a)² +(y-b)² = r²
</span></span>in this exercice : a =0 b = 0 r =8
<span>the equation of the circle is : x²+y² = 64</span>
Answer:
don't no<em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>he</u></em><em><u> </u></em><em><u>app</u></em><em><u> </u></em><em><u>vapru</u></em><em><u> </u></em><em><u>naga</u></em><em><u> </u></em><em><u>he</u></em><em><u> </u></em><em><u>app</u></em><em><u> </u></em><em><u>bakwas</u></em><em><u> </u></em><em><u>ahe</u></em>
Each two digit number has two numbers (duh!). Let's allow the tens digit to be x and the units digit to be y. Tens digit is 3 less than the units digit: x = y-3 Original number is 6 more than 4 times the sum of the digits: 10x+y-6 = 4x + 4y This gives us simultaneous equations!First let's clear the mess: 1. x= y-32. 6x-3y=6 Substitute 1 into 2: 6(y-3) -3y =66y - 18 - 3y = 6
3y = 24y = 8 Our units digit is 8 Substitute y= 8 into 1. x = y - 3x = 5 Our tens digit is 5 Therefore, our number is 58
Answer:
Step-by-step explanation:
We assume you want to compare your expression to the form ...
a(x -h)² +k
1/2(x +1)² +k
The multiplier outside parentheses is ...
a = 1/2
The horizontal offset inside parentheses is ...
-h = 1
h = -1
The vertical offset outside parentheses is ...
k = -3