<span>Z=15+2(x+y)
Use distributive property
Z= 15 + 2x + 2y
Subtract 2y from both sides
Z - 2y= 15 + 2x
Subtract 15 from both sides
Z - 2y - 15= 2x
Divide 2 on both sides
Final Answer: Z - 2y - 15(All over 2)= x</span>
Answer:
Step 2: 4(2) + 4(3x)
Step-by-step explanation:
By definition, the area of a rectangle is given by:
Area = Length × Width
In this case, we know that:
Area = 8 + 12x
Width = 4
Therefore:
Step 1: 8 + 12x
Step 2: 4(2) + (4)(3x)
Step 3: 4(2 + 3x)
Therefore, the dimensions of the rectangle are 4 and 2 + 3x.
The mistake was made in STEP 2. Instead of 4(2) + 4(x2) it should be 4(2) + 4(3x). Which is the second option.
If the answer is wrong then the answer isn't right but it also isn't left hence making it wrong.
Answer:

Step-by-step explanation:
Given
--- probability of scoring
Required
Probability that his first miss is his 6th shot
Let q represent the event that he did not score.
Using complement rule:

The event that his first miss is his 6th is represented as:
p p p p p q ---- That he scoress the first 5 attempts
So, the probability is:


Answer:
The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
Step-by-step explanation:
The volume (
), in cubic centimeters, and surface area (
), in square centimeters, formulas for the candle are described below:
(1)
(2)
Where:
- Radius, in centimeters.
- Height, in centimeters.
By (1) we have an expression of the height in terms of the volume and the radius of the candle:

By substitution in (2) we get the following formula:


Then, we derive the formulas for the First and Second Derivative Tests:
First Derivative Test



![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
There is just one result, since volume is a positive variable.
Second Derivative Test

If
:

(which means that the critical value leads to a minimum)
If we know that
, then the dimensions for the minimum amount of plastic are:
![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
![r = \sqrt[3]{\frac{3217\,cm^{3}}{2\pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3217%5C%2Ccm%5E%7B3%7D%7D%7B2%5Cpi%7D%7D)




And the amount of plastic needed to cover the outside of the candle for packaging is:



The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.