1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
2 years ago
14

I need help with this. What is the answer? (13 x 4 +5²) - 2

Mathematics
1 answer:
Fittoniya [83]2 years ago
7 0

Answer: 75

Step-by-step explanation:

You might be interested in
This is worth 20 points if you show work you will get the Brainliest answer if your unable to show work type it for your explana
KatRina [158]

Answer:

it let me now!!

Step-by-step explanation:

so i cant put an answer for some reason but here it is: when dividing fractions you would need to multiply to solve. The easyist way to do so from the ways i learned is keep change flip. so keep: 2/3 change a divide to a multiplication simbol and flip 1/4 to 4/1 so your left with G: 2/3 x 4/1

hope that helps btw if you need me to explain more let me know whats confusing you so i can help!!

5 0
3 years ago
Find the slope intercept form of the equation of the line that’s has the given properties (1 , 3) m=1/4
Helga [31]

Answer:

y = 1/4x + 11/4

Step-by-step explanation:

Given the slope, m = 1/4, and the point, (1, 3):

We can substitute these values into the slope-intercept form, y = mx + b, in order to solve for the y-intercept.  

The y-coordinate (b) of the point, (0, <em>b </em>) is the <u>y-intercept </u>of the line where the graph of the linear equation crosses the y-axis. The y-intercept is also the value of y when x = 0.

y = mx + b

3 = 1/4(1) + b

3 = 1/4 + b

Subtract 1/4 from both sides:

3 - 1/4 = 1/4 - 1/4 + b

11/4 = b

The y-coordinate, b, of the y-intercept is 11/4.

Therefore, the slope-intercept form is: y = 1/4x + 11/4

Please mark my answers as the Brainliest if you find this explanation helpful :)

4 0
2 years ago
Please help me on this <br><br> Simplify (12^2)^4
nika2105 [10]

(12^2)^4

= 12^(2*4)

= 12^8 (or 429,981,696)

7 0
4 years ago
DE-STRESSER
fomenos

Answer:

Step-by-step explanation:

LOL get some fidgets or a stress ball. they help

5 0
2 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Other questions:
  • Help !!! ..............
    5·1 answer
  • 12 1/7 + 3 6/11 add simply if possible will mark braniest been stuck for 25 min on this show ur work
    7·2 answers
  • Evaluate the expression 4y/x for x=8 and y=0
    6·1 answer
  • –40-7+3u simplified expression​
    15·1 answer
  • Apple juice and cranberry juice have been mixed in the ratio 4:5. If the price of apple juice is 45 cents per pint and the price
    5·1 answer
  • an item was selling for $72 is reduced to $60 find the precent decrease in price round your answer to the nearest tenth
    5·1 answer
  • Another ez question
    5·2 answers
  • What is the midpoint of the class 15-20
    9·1 answer
  • What is the relationship between multiplying and factoring? You multiply numbers or expressions to produce a (select). You facto
    13·1 answer
  • Create a data set describing two variables, with at least five data points, that has an equation for the line of best fit of y =
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!