The coordinates of the triangle A'B'C' are A'(x, y) = (- 4, 0), B'(x, y) = (- 6, 3) and C'(x, y) = (- 2, 5), respectively.
<h3>What are the coordinates of the image of the triangle by using a rotation rule?</h3>
In this problem we find the coordinates of the three vertices of the triangle and we must determine the coordinates of the image after rotating around the origin 90° counterclockwise. Given a point P, the coordinates of the point P' are calculated by the following expression:
P'(x, y) = (x · cos θ - y · sin θ, x · sin θ + y · cos θ)
Where:
- (x, y) - Coordinates of the point P.
- θ - Angle of rotation, in degrees.
Now we proceed to find the vertices of the new triangle:
A'(x, y) = (0 · cos 90° - 4 · sin 90°, 0 · sin 90° + 4 · cos 90°)
A'(x, y) = (- 4, 0)
B'(x, y) = (3 · cos 90° - 6 · sin 90°, 3 · sin 90° + 6 · cos 90°)
B'(x, y) = (- 6, 3)
C'(x, y) = (5 · cos 90° - 2 · sin 90°, 5 · sin 90° + 2 · cos 90°)
C'(x, y) = (- 2, 5)
To learn more on rotations: brainly.com/question/1571997
#SPJ1