1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sindrei [870]
1 year ago
6

%7B2%7D%20-%2049ay%20%5E%7B2%7D%20" id="TexFormula1" title="16y ^{5} - 12y ^{4} + 4y \\ \\ 64 a \times ^{2} - 49ay ^{2} " alt="16y ^{5} - 12y ^{4} + 4y \\ \\ 64 a \times ^{2} - 49ay ^{2} " align="absmiddle" class="latex-formula">
Plss answer this
​
Mathematics
1 answer:
Shkiper50 [21]1 year ago
7 0

Answer:

see explanation

Step-by-step explanation:

Assuming you require to factorise the expressions

16y^{5} - 12y^{4} + 4y ← factor out 4y from each term

= 4y(4y^{4} - 3y³ + 1)

--------------------------------

64ax² - 49ay² ← factor out a from each term

= a(64x² - 49y²) ← this is a difference of squares and factors in general as

a² - b² = (a - b)(a + b) , then

64x² - 49y²

= (8x)² - (7y)²

= (8x - 7y)(8x + 7y)

then

64ax² - 49ay² = a(8x - 7y)(8x + 7y)

You might be interested in
Find the value of x<br> (7x - 12) 114
Harrizon [31]

Answer:

(7x-12)=-5

-5x÷-5 114÷-5=

x=29

5 0
2 years ago
Read 2 more answers
A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of ¼ (1 + ½ sin t) oz/gal flows ito th
Likurg_2 [28]

Answer:

Part a)

y\left(t\right)=\frac{-1250cost+25sint}{5002}+25+\frac{63150}{2501}\frac{1}{e^{\frac{t}{50}}}

Part b)

Check the attached figure to see the ultimate behavior of the graph.

Part c)

The level = 25, Amplitude = 0.2499

Step-by-step Solution:

Part a)

Given:

Q(0)=50

Rate in:

\frac{1}{4}\left(1+\frac{1}{2}sint\right)\cdot 2\:=\:\frac{1}{2}\left(1+\frac{1}{2}sint\right)

Rate out:

\frac{Q}{100}\cdot 2=\frac{Q}{50}

So, the differential equation would become:

\frac{dQ}{dt}=\frac{1}{2}\left(1+\frac{1}{2}sint\right)-\frac{Q}{50}

Rewriting the equation:

\frac{dQ}{dt}+\frac{Q}{50}=\frac{1}{2}\left(1+\frac{1}{2}sint\right)

As p(x) is the coefficient of y, while q(x) is the constant term in the right side of the equation:

p\left(x\right)=\frac{1}{50}

q\left(x\right)=\frac{1}{2}\left(1+\frac{1}{2}sint\right)

First it is important to determine the function \mu :

\mu \left(t\right)=e^{\int \:p\left(t\right)dt}

        =e^{\int \:\left(\frac{1}{50}\right)dt}

        =e^{\frac{t}{50}}

The general solution then would become:

y\left(t\right)=\frac{1}{\mu \left(t\right)}\left(\int \mu \left(t\right)q\left(t\right)dt+c\:\right)

       =\frac{1}{e^{\frac{t}{50}}}\int e^{\frac{t}{50}}\:\frac{1}{2}\left(1+\frac{1}{2}sint\right)dt+\frac{1}{e^{\frac{t}{50}}}c

       =\frac{1}{e^{\frac{t}{50}}}\left(\frac{-25e^{\frac{t}{50}}\left(50cost-sint\right)}{5002}+25e^{\frac{t}{50}}\right)+\frac{1}{e^{\frac{t}{50}}}c

        =\frac{\left-1250cost+25sint\right}{5002}+25+\frac{1}{e^{\frac{t}{50}}}c

Evaluate at t=0

50=y\left(0\right)=\frac{\left(-1250cos0+25sin0\right)}{5002}+25+\frac{1}{e^{\frac{0}{50}}}c

Solve to c:

c=25+\frac{1250}{5002}

\mathrm{Cancel\:}\frac{1250}{5002}:\quad \frac{625}{2501}

c=25+\frac{625}{2501}

\mathrm{Convert\:element\:to\:fraction}:\quad \:25=\frac{25\cdot \:2501}{2501}

c=\frac{25\cdot \:2501}{2501}+\frac{625}{2501}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

c=\frac{25\cdot \:2501+625}{2501}

c=\frac{63150}{2501}

c\approx 25.25

Therefore, the general solution then would become:

y\left(t\right)=\frac{-1250cost+25sint}{5002}+25+\frac{63150}{2501}\frac{1}{e^{\frac{t}{50}}}

Part b) <em>Plot the Solution to see the ultimate behavior of the graph</em>

The graph appears to level off at about the value of Q=25.

The graph is attached below.

Part c)

In the graph we note that the level is Q=25.

Therefore, the level = 25

The amplitude is the (absolute value of the) coefficient of cost\:t in the general solution (as the coefficient of the sine part is a lot smaller):

Therefore,

                A=\frac{1250}{5002}\:\approx 2.499

Keywords: differential equation, word problem

Learn more about differential equation word problem from brainly.com/question/14614696

#learnwithBrainly

4 0
3 years ago
How much candy at $1.16 a pound should be mixed with candy worth 86 cent a pound in order to obtain a mixture of 60 pounds of ca
vovangra [49]
Let the weights of the two candies be repres. by x and y.

Then x + y = 60, or x = 60 - y

($1.16 / lb) x + ($0.86 / lb) y = ($1.00 / lb) (60 lb) = $60

Then 1.16(60-y) + 0.86y = 60
   69.6 - 1.16y + 0.86y = 60                                9.6
     9.6 = 0.3y                         Solving for y, y = ------- = 32 lb
                                                                            0.3

                                               Then x = (60-32) lb = 28 lb
5 0
3 years ago
Read 2 more answers
The owner of a quick oil-change business charges
Mkey [24]

Answer:

the sun is actually a planet

Step-by-step explanation:

8 0
3 years ago
Y=Cosx.arcsinx<br> What is the solution
Alinara [238K]

Step-by-step explanation:

Given: y = cos(sin^{-1}x))

As the domain for the inverse sine function is 1  ≤  x  ≤  1  as this is the range for the sine function.

The range for the function is the same as the range for the cosine function, 1  ≤  y  ≤  1

As

sin^{2}x +cos^{2}x = 1

So, using the identity cos(x) = \pm \sqrt{1-sin^{2}(x) }

y = \pm \sqrt{1-sin^{2}(sin^{-1}(x)) }

As the sin and inverse sin function do cancel each other, so only x² is left.

Hence,

y = \pm \sqrt{1-x^{2} ; -1\leq x\leq 1

<em>Keywords: trigonometric function </em>

<em>Learn more trigonometric function from brainly.com/question/12551115</em>

<em>#learnwithBrainly</em>

5 0
4 years ago
Other questions:
  • Which is true of the multiples of a prime number
    11·1 answer
  • What is 27.67 plus 79.8
    6·1 answer
  • Any help? On the graph of the equation x − 4y = −16, what is the value of the y-intercept? (1 point)
    6·1 answer
  • How would I do this question using odd co
    5·2 answers
  • Identify two similar triangles in the figure, and explain why they are similar. Then find AB.
    5·1 answer
  • Pls anwer the question
    6·1 answer
  • Select the correct answer.
    11·1 answer
  • 2. Multiple choice: Which number is an integer?<br> a. -11/5<br> b. -7<br> V15<br> c.<br> d. 1/2
    15·2 answers
  • Find the median of the following data set.
    13·2 answers
  • Corrine wrote temperatures in degrees Celsius and the equivalent temperatures in degrees Fahrenheit.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!