<span>60,000 - 4% = ?
Just do this and you will get your answer. </span>
Answer:
signs of the constants in the binomial factors are negative
Step-by-step explanation:
Assuming the first term (a) is positive, the fact that c is negative means the constants in the binomial factors have the same sign. The negative b means that sign is negative.
2x^2 -7x +6 = (x -2)(2x -3)
__
<em>Further comment</em>
c is the product of the constants in the binomial factors so will be positive when both those constants have the same sign.
b is the sum of the constants in the binomial factors. If both factors have the same sign (c > 0), then those constants have the same sign as b.
In this analysis, "a" is assumed to be positive. If it is not, then the same analysis can be done after reversing all of the signs.
Answer:
Matrix multiplication is not conmutative
Step-by-step explanation:
The matrix multiplication can be performed if the number of columns of the first matrix is equal to the number of rows of the second matrix
Let A with dimension mxn and B with dimension nxp represent two matrix
The multiplication of A by B is a matrix C with dimension mxp, but the multiplication of B by A is can't be calculated because the number of columns of B is not the number of rows of A. Therefore, you can notice that is not conmutative in general.
But even if the multiplication of AB and BA is defined (For example if A and B are squared matrix of 2x2) the multiplication is not necessary conmutative.
The matrix multiplication result is a matrix which entries are given by dot product of the corresponding row of the first matrix and the corresponding column of the second matrix:
![A=\left[\begin{array}{ccc}a11&a12\\a21&a22\end{array}\right]\\B= \left[\begin{array}{ccc}b11&b12\\b21&b22\end{array}\right]\\AB = \left[\begin{array}{ccc}a11b11+a12b21&a11b12+a12b22\\a21b11+a22b21&a21b12+a22b22\end{array}\right]\\\\BA=\left[\begin{array}{ccc}b11a11+b12a21&b11a12+b12a22\\b21a11+b22ba21&b21a12+b22a22\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11%26a12%5C%5Ca21%26a22%5Cend%7Barray%7D%5Cright%5D%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11%26b12%5C%5Cb21%26b22%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11b11%2Ba12b21%26a11b12%2Ba12b22%5C%5Ca21b11%2Ba22b21%26a21b12%2Ba22b22%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11a11%2Bb12a21%26b11a12%2Bb12a22%5C%5Cb21a11%2Bb22ba21%26b21a12%2Bb22a22%5Cend%7Barray%7D%5Cright%5D)
Notice that in general, the result is not the same. It could be the same for very specific values of the elements of each matrix.
Step-by-step explanation:
An + c = d
an=d-c
a=(d-c)/n is your answer