By derivative rules, the first derivative of the function f(x) = (3 · b · x + a · c) / [√(a · x)] is equal to f'(x) = [(3 · b) · √(a · x) - (3 · b · x + a · c) · 0.5 ·√(a / x)] / (a · x).
<h3>How to use derivative rules for a division between two functions</h3>
Let f(x) a function of the form f(x) = g(x) / h(x), whose first derivative is defined by the following expression:
f'(x) = [g'(x) · h(x) - g(x) · h'(x)] / [h(x)]² (1)
If we know that g(x) = 3 · b · x + a · c and h(x) = √(a · x), then the first derivative of the function is:
f(x) = (3 · b · x + a · c) / [√(a · x)]
g'(x) = 3 · b
h'(x) = 0.5 · a /√(a · x)
h'(x) = 0.5 ·√(a / x)
f'(x) = [(3 · b) · √(a · x) - (3 · b · x + a · c) · 0.5 ·√(a / x)] / [√(a · x)]²
f'(x) = [(3 · b) · √(a · x) - (3 · b · x + a · c) · 0.5 ·√(a / x)] / (a · x)
The first derivative of the function f(x) = (3 · b · x + a · c) / [√(a · x)] is equal to f'(x) = [(3 · b) · √(a · x) - (3 · b · x + a · c) · 0.5 ·√(a / x)] / (a · x).
To learn more on derivatives: brainly.com/question/25324584
#SPJ1