Answer:
The polar coordinates are as follow:
a. (6,2π)
b. (18, π/3)
c. (2√2 , 3π/4)
d. (2, 5π /6)
Step-by-step explanation:
To convert the rectangular coordinates into polar coordinates, we need to calculate r, θ .
To calculate r, we use Pythagorean theorem:
r =
---- (1)
To calculate the θ, first we will find out the θ
' using the inverse of cosine as it is easy to calculate.
So, θ
' =
cos
⁻¹ (x/r)
If y ≥ 0 then θ = ∅
If y < 0 then θ = 2
π − ∅
For a. (6,0)
Sol:
Using the formula in equation (1). we get the value of r as:
r = 
r = 6
And ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (6/6)
∅ =cos
⁻¹ (1) = 2π
As If y ≥ 0 then θ = ∅
So ∅ = 2π
The polar coordinates are (6,2π)
For a. (9,9/
)
Sol:
r = 9 + 3(3) = 18
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (9/18)
∅ = cos
⁻¹ (1/2) = π/3
As If y ≥ 0 then θ = ∅
then θ = π/3
The polar coordinates are (18, π/3)
For (-2,2)
Sol:
r =√( (-2)²+(2)² )
r = 2 √2
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (-2/ 2 √2)
∅ = 3π/4
As If y ≥ 0 then θ = ∅
then
θ = 3π/4
The polar coordinates are (2√2 , 3π/4)
For (-√3, 1)
Sol:
r = √ ((-√3)² + 1²)
r = 2
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ ( -√3/2)
∅ = 5π /6
As If y ≥ 0 then θ = ∅
So θ = 5π /6
The polar coordinates are (2, 5π /6)
X = text message you send or receive
39.99 + 0.15x <span>≤ 45
0.15x </span><span>≤ 5.01
x </span><span>≤ 33
the maximum </span>text message you send or receive is 33
39.99 + 0.15(33) = 44.94
Answer:
x= -3
Step-by-step explanation:
3(x-4)= -21
x - 4 = -7( to get this divide both sides of the equation by 3 )
x = -7 + 4 ( add 4 to both sides of the equation)
x = -3 ( then add -7 and 4 to get -3)
So clearly x = -3
HOPE THIS HELPED
This is a simple subtraction question,
y is a variable, so Jaron could be any age and still be 5 years older than dawn.
lets say Jaron is 20, since he is five years older, we can subtract 5 from 20 and get 15
so
y = 20
d = 15
d = dawn's age
Answer:
Step-by-step explanation:
Use Pythagorean theorem to find x.
Thus, the sum of the square of the lengths of two legs of a right triangle equal the square of the hypotenuse, which is the longest side.
Thus,



