<span>Find
the speed of each car.
Let a be the first car
Let b be the second car
=> a = x miles per hour
=> b = x + 12 miles per hour
=> 2 (x+ x + 12) = 232 miles per hour
=> 2x + 12 = 232
=> 2x + 12 = 116
=> 2x = 116 - 12
=> 2x / 2 = 104 / 2
=> x = 52 (speed of Car A)
=> 52 + 12 = 64 miles per hour (speed of Car B)</span>
Answer:
0.2103 = 21.03% probability that, in any seven-day week, the computer will crash less than 3 times.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Mean of 0.6 times a day
7 day week, so 
What is the probability that, in any seven-day week, the computer will crash less than 3 times? Round your answer to four decimal places.

In which




So

0.2103 = 21.03% probability that, in any seven-day week, the computer will crash less than 3 times.