Position of element in periodic table is depend on the electronic configuration of element.
Element with 62 electrons has following electronic configuration:
<span>1s2 2s2 </span>2p6 <span>3s2 </span>3p6 4s2 3d10 4p6 <span>5s2 </span>4d10 5p6 4f6 <span>6s<span>2
</span></span>
From above electronic configuration, it can be seen that highest value of principal quantum number, where electron is present, is 6. Hence, element belongs to 6th period.
Further, last electron has entered f-orbital, hence it is a f-block element. Position of f-block element is the bottom of periodic table.
Further, there are 6 electrons in f-orbital. Hence, it is the 6th f-block element in 6th period of periodic table.
Answer:
The amount of drug left in his body at 7:00 pm is 315.7 mg.
Explanation:
First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:

Where:
λ: is the decay constant = 
: is the half-life of the drug = 3.5 h
N(t): is the quantity of the drug at time t
N₀: is the initial quantity
After 90 min and before he takes the other 200 mg pill, we have:

Now, at 7:00 pm we have:

Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).
I hope it helps you!
Follow
these steps to solve the given equation:
Multiply
the two decimal figures together and find the sum of the exponents, that is,
(1.5
* 1.89) * 10 ^4+3
(2.835)
* 10^7
10^7
can also be written as e.70
'e'
stands for exponential.
Therefore,
we have 2. 835 e 7.0 = 2.8 e 7.0.
Based on the calculations above, the correct option is A.
The skeletal muscle ph is typically 7.15
Answer:
80.7 L
Explanation:
PV = nRT
P = 1520 mmHg = 2 atm
n = 5 mol
R = 0.08206 (L * atm)/(mol * K)
T = 393.15 K
2 (V) = 5 (0.08206) (393.15)
V ≈ 80.7 L