Answer:
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Middle 68%
Between the 50 - (68/2) = 16th percentile and the 50 + (68/2) = 84th percentile.
16th percentile:
X when Z has a pvalue of 0.16. So X when Z = -0.995
84th percentile:
X when Z has a pvalue of 0.84. So X when Z = 0.995.
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve
Answer:
Area of triangle is 9.88 units^2
Step-by-step explanation:
We need to find the area of triangle
Given E(5,1), F(0,4), D(0,8)
We will use formula:

We need to find the lengths of side DE, EF and FD
Length of side DE = a = 
Length of side DE = a = 
Length of side EF = b = 
Length of side EF = b = 
Length of side FD = c = 
Length of side FD = c = 
so, a= 8.60, b= 5.8 and c = 4
s = a+b+c/2
s= 8.6+5.8+4/2
s= 9.2
Area of triangle=
So, area of triangle is 9.88 units^2
Answer:
d.
Step-by-step explanation:
To convert a root to a fraction in the exponent, remember this rule:
![\sqrt[n]{a^{m}}=a^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
The index becomes the denominator in the fraction. (The index is the little number in front of the root, "n".) The original exponent remains in the numerator.
In this question, the index is 4.
The index is applied to every base in the equation under the root. The bases are 16, 'x' and 'y'.
![\sqrt[4]{16x^{15}y^{17}} = (\sqrt[4]{16})(\sqrt[4]{x^{15}})(\sqrt[4]{y^{17}}) = (2)(x^{\frac{15}{4}}})(y^{\frac{17}{4}}) = 2x^{\frac{15}{4}}}y^{\frac{17}{4}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16x%5E%7B15%7Dy%5E%7B17%7D%7D%20%3D%20%28%5Csqrt%5B4%5D%7B16%7D%29%28%5Csqrt%5B4%5D%7Bx%5E%7B15%7D%7D%29%28%5Csqrt%5B4%5D%7By%5E%7B17%7D%7D%29%20%3D%20%282%29%28x%5E%7B%5Cfrac%7B15%7D%7B4%7D%7D%7D%29%28y%5E%7B%5Cfrac%7B17%7D%7B4%7D%7D%29%20%3D%202x%5E%7B%5Cfrac%7B15%7D%7B4%7D%7D%7Dy%5E%7B%5Cfrac%7B17%7D%7B4%7D%7D)
To find the quad root of 16, input this into your calculator. Since 2⁴ = 16,
= 2.
For the "x" and "y" bases, use the rule for converting roots to exponent fractions. The index, 4, becomes the denominator in each fraction.

Answer:
it is d
Step-by-step explanation: