1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
2 years ago
9

HOW MANY 7 DIGIT TELEPHONE NUMBERS ARE POSSIBLE IF THE FIRST DIGIT CANNOT BE ZERO AND:

Mathematics
1 answer:
hichkok12 [17]2 years ago
3 0

Using the Fundamental Counting Theorem, the number of possible telephone numbers is given by:

a) 900,000.

b) 78,125.

c) 10,000.

<h3>What is the Fundamental Counting Theorem?</h3>

It is a theorem that states that if there are n things, each with n_1, n_2, \cdots, n_n ways to be done, each thing independent of the other, the number of ways they can be done is:

N = n_1 \times n_2 \times \cdots \times n_n

For item a, a multiple of 100 means that the last two digits are 00, hence the parameters are:

n_1 = 9, n_2 = n_3 = n_4 = n_5 = 10, n_6 = n_7 = 1

Hence the number is:

N = 9 x 10^5 = 900,000.

For item b, odd digits are 1, 3, 5, 7 and 9, hence the parameters are:

n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = n_7 = 5

Hence the number is:

N = 5^7 = 78,125.

For item c, if the first 3 digits are 277, the parameters are:

n_1 = n_2 = n_3 = 1, n_4 = n_5 = n_6 = n_7 = 10

Hence the number is:

N = 10^4 = 10,000.

More can be learned about the Fundamental Counting Theorem at brainly.com/question/24314866

#SPJ1

You might be interested in
How do I do this what is it asking
padilas [110]
\bf \qquad \qquad \qquad \qquad \textit{function transformations}&#10;\\ \quad \\\\&#10;&#10;\begin{array}{rllll} &#10;% left side templates&#10;f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}&#10;\end{array}

now.. notice the template above

so hmm  \bf \begin{array}{llll}&#10;% right side info&#10;\bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\&#10;\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}&#10;\\\\&#10;\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\&#10;\end{array}

\bf \begin{array}{llll}&#10;&#10;&#10;\bullet \textit{ vertical shift by }{{  D}}\\&#10;\qquad if\ {{  D}}\textit{ is negative, downwards}\\\\&#10;\qquad if\ {{  D}}\textit{ is positive, upwards}\\\\&#10;\bullet \textit{ period of }\frac{2\pi }{{{  B}}}&#10;\end{array}

on a)  D is 2
on b)  D is -2
on c) A is 2
on d) A is 1/2


3 0
3 years ago
Please help me with this math question
Alja [10]

Answer:

5.50 years

Step-by-step explanation:

A = P(1 + \frac{r}{n})^{nt}

A = final amount

P = initial principal balance

r = interest rate

n = number of times interest applied per time period

t = number of time periods elapsed

3178 = 2000(1+.086/2)^2t

t = 5.499904413

7 0
3 years ago
Is the following statement true or false?<br> A plane has an endpoint.
rjkz [21]
The answer is false because a plane goes on infinitively
8 0
3 years ago
write the equation and find the value of x. round side length to the nearest tenth and angle measures to the nearest degree​
mash [69]

Answer:

  • x = 12.5

Step-by-step explanation:

<u>Equation:</u>

  • cos 28 = 11/x
  • x = 11/ cos 28
  • x = 12.5 (rounded)
3 0
3 years ago
2logx=3-2log(x+3) solve for x​
AVprozaik [17]

Answer:

\large\boxed{x=\dfrac{-3+\sqrt{40+10\sqrt{10}}}{2}}

Step-by-step explanation:

2\log x=3-2\log(x+3)\\\\Domain:\ x>0\ \wedge\ x+3>0\to x>-3\\\\D:x>0\\============================\\2\log x=3-2\log(x+3)\qquad\text{add}\ 2\log(x+3)\ \text{to both sides}\\\\2\log x+2\log(x+3)=3\qquad\text{divide both sides by 2}\\\\\log x+\log(x+3)=\dfrac{3}{2}\qquad\text{use}\ \log_ab+\log_ac=\log_a(bc)\\\\\log\bigg(x(x+3)\bigg)=\dfrac{3}{2}\qquad\text{use the de}\text{finition of a logarithm}\\\\x(x+3)=10^\frac{3}{2}\qquad\text{use the distributive property}

x^2+3x=10^{1\frac{1}{2}}\\\\x^2+3x=10^{1+\frac{1}{2}}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\x^2+3x=10\cdot10^\frac{1}{2}\qquad\text{use}\ \sqrt[n]{a}=a^\frac{1}{n}\\\\x^2+3x=10\sqrt{10}\qquad\text{subtract}\ 10\sqrt{10}\ \text{from both sides}\\\\x^2+3x-10\sqrt{10}=0\\\\\text{Use the quadratic formula}\\\\ax^2+bx+c=0\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\a=1,\ b=3,\ c=-10\sqrt{10}\\\\b^2-4ac=3^2-4(1)(-10\sqrt{10})=9+40\sqrt{10}\\\\x=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2(1)}=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2}\\\\x=\dfrac{-3-\sqrt{10+10\sqrt{10}}}{2}\notin D

6 0
3 years ago
Other questions:
  • Find the number of permutations in the word calculus?
    8·1 answer
  • Trying to estimate the numbers 286,174+35,252+30,796 to see if my answers are reasonable when the numbers are all added up
    11·1 answer
  • Algebra, pls help
    12·1 answer
  • Evaluate the expression when a=2 and b=20. 50a - 2b + 6 = [ ? ]​
    8·1 answer
  • Ppllllzzzzz help me plz
    12·1 answer
  • Please symplify this equation
    10·2 answers
  • Triangle ABC is translated 5 units to the right and 2 units up. Match the correct
    12·1 answer
  • Help me please!!!!!!!!
    5·2 answers
  • 5log5 (17)What the steps to this problem because I don’t understand
    10·2 answers
  • Help meeee <br> Is 2.127 rational or irrational? I WILL GIVE BRAINLIEST HURRY
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!