The following information about the integral equation is found:
a) g(0) = 0, g(2) = 2, g(4) = 0, g(6) = - 2, g(8) = 0, g(10) = 6, g(12) = 16, g(14) = 23.
b) There is a minimum at x = 6 and a maximum at x = 14.
c) The option in the lower left corner of the third picture represents a <em>rough</em> graph of g(x).
<h3>How to evaluate a function equal to an integral equation</h3>
<em>Integral</em> equations are expressions that involves functions and integrals. In this case we find a function defined by <em>definite</em> integral, that is, an integral with <em>known</em> limits. Graphically speaking, we know that <em>definite</em> integral is the sum of areas "below" the curve in the given interval.
Now we evaluate the function at each point:
g(0) = 0
g(2) = 0.5 · (2) · (2) = 2
g(4) = 0.5 · (2) · (2) - 0.5 · (2) · (2) = 0
g(6) = 0.5 · (2) · (2) - 0.5 · (2) · (2) - 0.5 · (2) · (2) = -2
g(8) = 0.5 · (2) · (2) - 0.5 · (2) · (2) - 0.5 · (2) · (2) + 0.5 · (2) · (2) = 0
g(10) = 0.5 · (2) · (2) - 0.5 · (2) · (2) - 0.5 · (2) · (2) + 0.5 · (4) · (4) = 6
g(12) = 0.5 · (2) · (2) - 0.5 · (2) · (2) - 0.5 · (2) · (2) + 0.5 · (6) · (6) = 16
g(14) = 0.5 · (2) · (2) - 0.5 · (2) · (2) - 0.5 · (2) · (2) + 0.5 · (6) · (6) + 0.5 · (1) · (2) + (1) · (4) + 0.5 · (1) · (4) = 23
There is a minimum at x = 6 and a maximum at x = 14.
The option in the lower left corner of the third picture represents a <em>rough</em> graph of g(x).
To learn more on integral equations: brainly.com/question/15263893
#SPJ1