Answer:
the polynomial has degree 8
Step-by-step explanation:
Recall that the degree of a polynomial is given by the degree of its leading term (the term with largest degree). Recall as well that the degree of a term is the maximum number of variables that appear in it.
So, let's examine each of the terms in the given polynomial, and count the number of variables they contain to find their individual degrees. then pick the one with maximum degree, and that its degree would give the actual degree of the entire polynomial.
1) term
contains four variables "x" and two variables "y", so a total of six. Then its degree is: 6
2) term
contains two variables "x" and five variables "y", so a total of seven. Then its degree is: 7
3) term
contains four variables "x" and four variables "y", so a total of eight. Then its degree is: 8
This last term is therefore the leading term of the polynomial (the term with largest degree) and the one that gives the degree to the entire polynomial.
Answer:
2%
Step-by-step explanation:
In this case each one is an independent event, therefore, the multiplication of each one would be the final probability
We have 5 Red Marbles, 4 Green Marbles, and 3 Blue Marbles, that is, there are 5 + 4 + 3 12 Marbles in total.
Now if I draw a red one, the probability would be: 5/12
When drawing another red, the probability would be: 4/11
When taking the green: 4/10
When removing the blue: 3/9
Finally, the final probability is:
P = (5/12) * (4/11) * (4/10) * (3/9)
P = 0.020
In other words, the probability of this happening is 2%
Answer:
the answer should be 7a^3-4a^2-2a-87
Answer:
10 and 15
Step-by-step explanation:
Let 'x' and 'y' are the numbers we need to find.
x + y = 25 (two numbers whose sum is 25)
(1/x) + (1/y) = 1/6 (the sum of whose reciprocals is 1/6)
The solutions of the this system of equations are the numbers we need to find.
x = 25 - y
1/(25 - y) + 1/y = 1/6 multiply both sides by 6(25-y)y
6y + 6(25-y) = (25-y)y
6y + 150 - 6y = 25y - (y^2)
y^2 - 25y + 150 = 0 quadratic equation has 2 solutions
y1 = 15
y2 = 10
Thus we have
:
First solution: for y = 15, x = 25 - 15 = 10
Second solution: for y = 10, x = 25 - 10 = 15
The first and the second solution are in fact the same one solution we are looking for: the two numbers are 10 and 15 (since the combination 10 and 15 is the same as 15 and 10).