Explanation:
There is a massive variety of different types of fruit. The main separation between fruit types is between fleshy and dry fruits. Fleshy fruits have a juicy layer of tissue in the pericarp, seen in fruits such as oranges, tomatoes and grapes; whereas dry fruits do not
Answer:
The muscle action can be determined by:
* Prime Movers and antagonist: Prime movers are also called the agonist, it is the muscle that provides the force that drives the action. Regarding to the antagonist muscle, it is the opposite to a prime mover as it provides resistance or reverse in a given movement. They are paired up on opposite sides of a joint.
* Synergists: There are one (or more) synergists involved in an action, the are muscles that help the prime mover when it is playing its role.
* Stabilizers: Their fuction is to keep bones immobile when it is needed. For example, the muscle of your back, they are stabilizers when the keep your posture sturdy.
Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
Answer:
less of a chance for mutations
Explanation: