1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
2 years ago
14

The value of an algebraic expression depends on the value of each variable in the expression.

Mathematics
1 answer:
sveta [45]2 years ago
3 0

The value of an algebraic expression depends on the value of each variable in the expression in other words, the value of an algebraic expression <u>varies</u> for different values of the <u>variables</u>.

You might be interested in
Considere a função de oferta como sendo y= 5x - 1/2 e a função de demanda como sendo y= -7x + 47/2 , onde x é a quantidade e y é
swat32

A) Temos que igualar isso a 2,50, que é o valor de y, ou seja, o valor do preço. Façamos isso, então, na função de demanda.

y = -7x + \frac{47}{2}

Substituir.

2,50 = - 7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

-7x  = - \frac{47}{2} + 2,50

A fração 47/2 corresponde a 23,5. É mais interessante para nós, nesse caso, utilizar o valor decimal.

-7x  = - 23,5 + 2,50

Somar logo.

-7x = -21

Podemos multiplicar por -1 para tirar os sinais negativos.

7x = 21

Passar o x dividindo

x = \frac{21}{7}

Dividir

\boxed{x = 3}

Para um preço de R$ 2,50, a quantidade demandada é de 3 unidades.



B) Basta igualar as duas formulinhas.

5x - \frac{1}{2} = -7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

5x + 7x = \frac{47}{2} + \frac{1}{2}

Somar tudo. Como as frações têm o mesmo denominador, <u>nada de </u><u>mmc</u>! Basta somar os numeradores.

12x = \frac{48}{2}

Podemos dividir lá, olha:

12x = 24

Passar o x dividindo

x = \frac{24}{12}

Dividir

\boxed{x = 2}

O ponto de equilíbrio é o valor 2.



C) Basta, então, igualar as fórmulas da oferta e da demanda a 10.

Fórmula da oferta

10 = 5x - \frac{1}{2}

Passar o que é x de um lado e o que é número do outro lado.

5x = 10 - \frac{1}{2}

Se 1/2 = 0,5, dá pra resolver sem fazer mmc:

5x = 10 - 0,5

Subtrair

5x = 9,5

Passar dividindo

x = \frac{9,5}{5}

Dividir.

\boxed{x = 1,9}

Fórmula da demanda

10 = -7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

-7x = \frac{47}{2} - 10

Divide 47/2, vai.

-7x = 23,5 - 10

Subtrair.

-7x = 13,5

Passar o 7 dividindo.

x = - \frac{13,5}{7}

Vamos dividir e transformar em decimal.

\boxed{x = -1,9285714285714285714285714285714}


Subtrair a oferta pela demanda.

x = 1,9 - (-1,9285714285714285714285714285714)

Subtrair.

\boxed{x = 3,8285714285714285714285714285714}

Arredondando, o preço será de R$ 3,83.

8 0
3 years ago
15 out of 25 perfer skittles to M&amp;MS. what percent of students prefer skittles ​
likoan [24]

Answer:

60%

Step-by-step explanation:

Just divide 15 by 25 and then move the decimal point 2 places to the right. Then turn that number into a percentage.

6 0
3 years ago
Read 2 more answers
16. A telemarketer makes six phone calls per hour and is able to make a sale on 30% of these contacts. During the next two hours
Reika [66]

Answer:

a) 23.11% probability of making exactly four sales.

b) 1.38% probability of making no sales.

c) 16.78% probability of making exactly two sales.

d) The mean number of sales in the two-hour period is 3.6.

Step-by-step explanation:

For each phone call, there are only two possible outcomes. Either a sale is made, or it is not. The probability of a sale being made in a call is independent from other calls. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

A telemarketer makes six phone calls per hour and is able to make a sale on 30% of these contacts. During the next two hours, find:

Six calls per hour, 2 hours. So

n = 2*6 = 12

Sale on 30% of these calls, so p = 0.3

a. The probability of making exactly four sales.

This is P(X = 4).

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 4) = C_{12,4}.(0.3)^{4}.(0.7)^{8} = 0.2311

23.11% probability of making exactly four sales.

b. The probability of making no sales.

This is P(X = 0).

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.3)^{0}.(0.7)^{12} = 0.0138

1.38% probability of making no sales.

c. The probability of making exactly two sales.

This is P(X = 2).

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 2) = C_{12,2}.(0.3)^{2}.(0.7)^{10} = 0.1678

16.78% probability of making exactly two sales.

d. The mean number of sales in the two-hour period.

The mean of the binomia distribution is

E(X) = np

So

E(X) = 12*0.3 = 3.6

The mean number of sales in the two-hour period is 3.6.

4 0
3 years ago
You are saving money to buy an electric guitar. You deposit $1000 in an account that earns interest compounded annually. The exp
Katena32 [7]
Let's move like a crab, backwards some.

after 2 years?

\bf ~~~~~~ \textit{Compound Interest Earned Amount}&#10;\\\\&#10;A=P\left(1+\frac{r}{n}\right)^{nt}&#10;\quad &#10;\begin{cases}&#10;A=\textit{accumulated amount}\\&#10;P=\textit{original amount deposited}\to &\$1000\\&#10;r=rate\to 3\%\to \frac{3}{100}\to &0.03\\&#10;n=&#10;\begin{array}{llll}&#10;\textit{times it compounds per year}\\&#10;\textit{annually, thus once}&#10;\end{array}\to &1\\&#10;t=years\to &2&#10;\end{cases}&#10;\\\\\\&#10;A=1000\left(1+\frac{0.03}{1}\right)^{1\cdot 2}\implies A=1000(1.03)^2

after 3 years?

\bf ~~~~~~ \textit{Compound Interest Earned Amount}&#10;\\\\&#10;A=P\left(1+\frac{r}{n}\right)^{nt}&#10;\quad &#10;\begin{cases}&#10;A=\textit{accumulated amount}\\&#10;P=\textit{original amount deposited}\to &\$1000\\&#10;r=rate\to 3\%\to \frac{3}{100}\to &0.03\\&#10;n=&#10;\begin{array}{llll}&#10;\textit{times it compounds per year}\\&#10;\textit{annually, thus once}&#10;\end{array}\to &1\\&#10;t=years\to &3&#10;\end{cases}&#10;\\\\\\&#10;A=1000\left(1+\frac{0.03}{1}\right)^{1\cdot 3}\implies A=1000(1.03)^3

is that enough to pay the $1100?


now, let's write 1000(1+r)² in standard form

1000( 1² + 2r + r²)

1000(1 + 2r + r²)

1000 + 2000r + 1000r²

1000r² + 2000r + 1000   <---- standard form.
8 0
3 years ago
if you’re good with set theory in math 30 please help with questions 31 and 32!! real answers only !!
GREYUIT [131]

Answer:  31) d     32) c

<u>Step-by-step explanation:</u>

31)

A = {1, 3, 5, 15}

B = {2, 3, 5, 7}

A ∪ B = {1, 2, 3, 5, 7, 15}

C = {2, 4, 6, 8}

(A ∪ B) ∩ C = {1, 2, 3, 5, 7, 15} ∩ {2, 4, 6, 8} = {2}

<em>2 is the only number in both sets</em>

32)

The pattern is: reflection, add symbol, ..., reflection, add symbol.

The last image shown is: add symbol

So the next image will be: reflection (flipped to the left)

7 0
3 years ago
Other questions:
  • $9.60 for 4 pounds as a unit rate
    5·1 answer
  • What are the three types of solutions possible when solving an inequality
    5·1 answer
  • Hey can you please help me posted picture of question
    9·1 answer
  • If you are given the endpoints of the diameter of a circle, which equatior
    11·1 answer
  • 1. Which equation is equivalent to the equation 6x + 9 = 12?
    10·1 answer
  • Anagha's mother bought an equal number of ladoos and pedas. She put 13 of the ladoos and 15 of the pedas into a packet and gave
    6·1 answer
  • Draw a number line -5through 5 and mark 0≤x≤2
    6·1 answer
  • Which calculation correctly uses prime factorization to write V48 in simplest form?
    6·1 answer
  • A package of 6 pairs of insulated gloves costs $31.74. What is the unit price of the pairs of gloves?
    15·2 answers
  • Which is equivalent to 80 1/4x <br> (80/4)
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!