1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
2 years ago
5

HELP ME PLEASE, WILL MARK BRAINLIEST

Mathematics
1 answer:
kifflom [539]2 years ago
3 0

The height of the arrow at 2.5 seconds is 71 feet.

Given:

An arrow released from a bow, traveling towards a target 200 yards away,reaches a max height of 42.6 ft in only 1.5 seconds.

1.5 seconds = 42.6 feet

divide by 1.5 on both sides.

1 sec = 28.4 feet

0.5 sec = 28.4/2

0.5 sec = 14.2 feet

2.5 sec = 1.5 sec + 1 sec

= 42.6 + 28.4

= 71 feet

Therefore The height of the arrow at 2.5 seconds is 71 feet.

Learn more about the max height here:

brainly.com/question/22564953

#SPJ1

You might be interested in
Find the measure of angle ABC​
victus00 [196]
First we need to find x so 6x+8x+6x= 180
20x=180 and x= 9

So A= 6*9= 54
B= 8*9= 72
C= 6*9= 54
5 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Let f(x)=3x + 5 and g(x) = 3x2 - x - 10. Find (f/g)(x) and state it’s domain
koban [17]

Answer:

9x²-3x-25, Domain is all real numbers

Step-by-step explanation:

f(g(x)) = 3(3x²-x-10)+5

= 9x²-3x-30+5

= 9x²-3x-25

Domain is all real numbers

5 0
3 years ago
Many companies use a quality control technique called acceptance sampling to monitor incoming shipments of parts, raw materials,
blondinia [14]

Answer:

A. 0.9510

B. 0.0480

C. 0.0490

D. No, I would not feel comfortable accepting the shipment if one item was found defective, because the probability is quite small to obtain 1 or more defective items.

8 0
3 years ago
Antonio drove 26 miles north, and then drives west. At the end of his drive, it is determined that he is 50 miles from where he
Dmitriy789 [7]

Answer:

24

Step-by-step explanation:

50 minus 26 is 24 so this explains that it is 24 pretty easy not gonna lie

8 0
3 years ago
Other questions:
  • Subtracting: (-3n-6n4+6n3) -(3n3-9n4+n)
    15·1 answer
  • What are the possible rational zeros of f(x) = 3x4 + x3 − 13x2 − 2x + 9?
    14·1 answer
  • PLEASE HELP I WILL GIVE 50 POINTS
    8·2 answers
  • Help me please guys
    9·1 answer
  • C
    12·1 answer
  • Estimate: √106 <br> A. 9<br> B. 10<br> C. 11<br> D. 12
    13·1 answer
  • HELP PLS DUE TODAY
    15·1 answer
  • A normal distribution has a mean of 137 and a standard deviation of 7. Find the z-score for a data value of 121. Incorrect Round
    10·2 answers
  • Which list shows numbers in order from least to greatest? please help me
    7·2 answers
  • Please answer it’s due tomorrow
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!