General Idea:
When a point or figure on a coordinate plane is moved by sliding it to the right or left or up or down, the movement is called a translation.
Say a point P(x, y) moves up or down ' k ' units, then we can represent that transformation by adding or subtracting respectively 'k' unit to the y-coordinate of the point P.
In the same way if P(x, y) moves right or left ' h ' units, then we can represent that transformation by adding or subtracting respectively 'h' units to the x-coordinate.
P(x, y) becomes
. We need to use ' + ' sign for 'up' or 'right' translation and use ' - ' sign for ' down' or 'left' translation.
Applying the concept:
The point A of Pre-image is (0, 0). And the point A' of image after translation is (5, 2). We can notice that all the points from the pre-image moves 'UP' 2 units and 'RIGHT' 5 units.
Conclusion:
The transformation that maps ABCD onto its image is translation given by (x + 5, y + 2),
In other words, we can say ABCD is translated 5 units RIGHT and 2 units UP to get to A'B'C'D'.
Answer:
17 degrees
Step-by-step explanation:
So to find the answer you need to subtract. If the temp went down 22.1 degrees and it is -5.1 degrees you will subtract 22.1 - 5.1. This equals 17 degrees. You know the answer is correct because you can check your answer by adding: 5.1 + 17 = 22.1. We are disregarding the negative sign.
The absolute value inequality can be decomposed into two simpler ones.
x < 0
x > -8
<h3>
</h3><h3>
Which two inequalities can be used?</h3>
Here we start with the inequality:
3|x + 4| - 5 < 7
First we need to isolate the absolute value part:
3|x + 4| < 7 + 5
|x + 4| < (7 + 5)/3
|x + 4| < 12/3
|x + 4| < 4
The absolute value inequality can now be decomposed into two simpler ones:
x + 4 < 4
x + 4 > - 4
Solving both of these we get:
x < 4 - 4
x > -4 - 4
x < 0
x > -8
These are the two inequalities.
Learn more about inequalities:
brainly.com/question/24372553
#SPJ1