1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
1 year ago
6

Answer fast its sue by end of class

Mathematics
1 answer:
shtirl [24]1 year ago
6 0

Step-by-step explanation:

question 1. Solve the equation 8-7/10 c = 6 - 1/5c for c

8 - 7/10c = 6 - 1/5c

subtract 8 from both sides:

8 - 7/10c - 8 = 6 - 1/5c - 8

- 7/10c  = -2 - 1/5c

add 1/5c to both sides:

- 7/10c + 1/5c = -2 - 1/5c  + 1/5c

- 7/10c + 1/5c = -2

change to common denominator:

- 7/10c+ 2/10c = -2

- 5/10c = -2

-1/2c = -2

multiply both sides by -2:

- 1/2c(-2) = -2(-2)

c = 4

___________________________________

question 2. 75 - 3.5y - 4y = 4y + 6 for y

75 - 3.5y - 4y = 4y + 6

75 - 7.5y = 4y + 6

add 7.5y to both sides:

75 - 7.5y + 7.5y = 4y + 6 + 7.5y

75 = 11.5y + 6

subtract 6 from both sides:

75 - 6 = 11.5y + 6 - 6

69 = 11.5y

divide both sides by 11.5:

69/11.5 = 11.5y/11.5

y = 6

___________________________________

Question 3. Solve the equation 16.5 + 2.75h = 9h + 7.5 − 4.25h for h.

16.5 + 2.75h = 9h + 7.5 − 4.25h

16.5 + 2.75h = 4.75h + 7.5

subtract 7.5 from both sides:

16.5 + 2.75h - 7.5 = 4.75h + 7.5 - 7.5

9 + 2.75h =  4.75h

subtract 2.75h from both sides:

9 + 2.75h - 2.75h =  4.75h - 2.75h

9 = 2h

divide both sides by 2:

9/2 = 2h/2

h = 9/2

You might be interested in
If 70% is £14 what is the full price
Veseljchak [2.6K]
70℅ = 14
100 = X

70X = 1400

X = 1400/70

X = 20

20 Euros is the full price
6 0
3 years ago
X²+Y²=250 and XY=117<br> What are the values of X and Y?
yan [13]

Answer:

<h3>            x = -9,  y = -13 </h3><h3>    or    x = 13,   y = 9</h3><h3>    or    x = -13,  y = -9</h3><h3>    or     x = 9,   y = 13</h3>

Step-by-step explanation:

x^2+y^2=250\\\\x^2-2xy+y^2+2xy=250\\\\(x-y)^2=250-2xy\\\\(x-y)^2=250-2\cdot117\\\\ (x-y)^2=16\\\\x-y=4\qquad\qquad\vee\qquad \qquad  x-y=-4\\\\x=4+y \qquad\qquad \vee\qquad\qquad x=-4+y\\\\(y+4)y=117\qquad\vee\qquad\quad (y-4)y=117\\\\y^2+4y-117=0\qquad\vee\qquad y^2-4y-117=0\\\\y=\dfrac{-4\pm\sqrt{4^2-4(-117)}}{2\cdot1}\qquad\vee\qquad y=\dfrac{4\pm\sqrt{4^2-4(-117)}}{2\cdot1}\\\\y=\dfrac{-4\pm\sqrt{16+468}}{2}\qquad\ \ \vee\qquad y=\dfrac{4\pm\sqrt{16+468}}{2}

y_1=\dfrac{-4-22}{2}\ ,\quad y_2=\dfrac{-4+22}{2}\ ,\quad y_3=\dfrac{4-22}{2}\ ,\quad y_4=\dfrac{4+22}{2}\\\\y_1=-13\ ,\qquad y_2=9\ ,\qquad\quad\qquad\ y_3=-9\ ,\qquad y_4=13\\\\x_{1,2}=4+y_{1,2}\qquad\qquad\qquad\qquad\qquad x_{3,4}=-4+y_{3,4}\\\\x_1=-9\ ,\qquad x_2=13\ ,\qquad\quad\qquad x_3=-13\ ,\qquad x_4=9

6 0
3 years ago
9/4 is between what two numbers
Debora [2.8K]
9/4 is between 2 and 3
3 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Help help help please
torisob [31]
Answers:
The length of XY is 4
The length of ZW is 6

Because we don't get the same length (for XY and ZW), this means that the segments are not congruent.

-------------------------------------------------------------

To find the length of segment XY, you can count the number of spaces between -7 and -3 to get 4 units. Or you can subtract and use the absolute value notation to ensure the result is positive

|-7-(-3)| = |-7+3| = |-4| = 4

Do the same for segment ZW. 
|2-8| = |-6| = 6


7 0
3 years ago
Other questions:
  • ASAP HELP!! CAN SOMEONE PLS HELP ME WITH 20? U HAVE TO USE 18 and 19 to help you!!! THANK U SM!
    14·1 answer
  • 42,429 rounded to the nearest ten thousand
    15·1 answer
  • Find two different planes whose intersection is theline:x = 6 + 3ty = -8 - 3tz = -1 - tWrite equations for each plane in the for
    8·1 answer
  • PLS HELPPPPPP<br> solve for x and y
    10·1 answer
  • Find the number that makes the ratio equivalent to 8:5. 72:?
    7·1 answer
  • A species of bacteria is 10 micrometers long. A virus is 10,000 times smaller than bacteria. a. Using the table above, find the
    5·1 answer
  • Which statement compares the two numbers correctly?
    8·1 answer
  • PLZ needed now plz URGENT!
    15·1 answer
  • As head of the Parks Department, Jada has been tracking the park’s use of different supplies over the last several years. Her re
    11·1 answer
  • Help me please. I’ll mark brainliest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!