1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
1 year ago
13

19) Given that f(x)x² - 8x+ 15x² - 25find the horizontal and vertical asymptotes using the limits of the function.A) No Vertical

or Horizontal asymptotesB) No Vertical asymptotesHorizontal asymptote aty - 1Vertical asymptote at x = 5Horizontal asymptote at y = 1D) Vertical asymptote at x = -5Horizontal asymptote at y = 1
Mathematics
1 answer:
Tems11 [23]1 year ago
4 0

EXPLANATION

Since we have the function:

f(x)=\frac{x^2-8x+15}{x^2}

Vertical asymptotes:

For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points,\:also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function.

Taking the denominator and comparing to zero:

x+5=0

The following points are undefined:

x=-5

Therefore, the vertical asymptote is at x=-5

Horizontal asymptotes:

\mathrm{If\:denominator's\:degree\:>\:numerator's\:degree,\:the\:horizontal\:asymptote\:is\:the\:x-axis:}\:y=0.If\:numerator's\:degree\:=\:1\:+\:denominator's\:degree,\:the\:asymptote\:is\:a\:slant\:asymptote\:of\:the\:form:\:y=mx+b.If\:the\:degrees\:are\:equal,\:the\:asymptote\:is:\:y=\frac{numerator's\:leading\:coefficient}{denominator's\:leading\:coefficient}\mathrm{If\:numerator's\:degree\:>\:1\:+\:denominator's\:degree,\:there\:is\:no\:horizontal\:asymptote.}\mathrm{The\:degree\:of\:the\:numerator}=1.\:\mathrm{The\:degree\:of\:the\:denominator}=1\mathrm{The\:degrees\:are\:equal,\:the\:asymptote\:is:}\:y=\frac{\mathrm{numerator's\:leading\:coefficient}}{\mathrm{denominator's\:leading\:coefficient}}\mathrm{Numerator's\:leading\:coefficient}=1,\:\mathrm{Denominator's\:leading\:coefficient}=1y=\frac{1}{1}\mathrm{The\:horizontal\:asymptote\:is:}y=1

In conclusion:

\mathrm{Vertical}\text{ asymptotes}:\:x=-5,\:\mathrm{Horizontal}\text{ asymptotes}:\:y=1

You might be interested in
If KX - 8Y + 4 =0 is parallel to the line who’s equation is 3X -4Y+8 = 0. What is the value of K
Alex_Xolod [135]

So - first you gotta put it in the y = mx + b form.


4Y = 3X +8

=> y = 4/3X + 1/2

A parallel line has the same slope. So if 3X - 4Y + 8=0 has a slope of 4/3 then the value of K must also be 4/3

5 0
3 years ago
Plz help asap thank you​
attashe74 [19]

Answer:

Solved using the <u>Exterior angle theorem</u>.

2x-5+x-17 = 128

3x-22 = 128

3x = 150

x = 50

8 0
3 years ago
during one semester, the time elaine spent doing homework or participating in extracurricular activities was 20 percent less tha
polet [3.4K]

Answer:

963 hours

Step-by-step explanation:

I subtracted 20 from the 981

7 0
1 year ago
What is the distance between -16 and 2 on a number line
Free_Kalibri [48]
The answer is -14 ........
8 0
3 years ago
У= 3х-5<br> у = 3х+12<br> Please help ASAP for my lil sister
exis [7]

Answer:

0

Step-by-step explanation:

The equation is undefined.

4 0
3 years ago
Other questions:
  • Help do this 868÷4 657÷2. 8473÷7 using long division
    9·2 answers
  • Solve this I can’t seem to get it
    15·1 answer
  • $11.20 is 30% of what number
    8·1 answer
  • Find the value of h(45) for the function below. h(x)=1/9(90 - x). A. 15 B. 5 C. -35 D. -315
    15·1 answer
  • 3/2y- 3 + 5/3 z when y = 6 and z = 3
    11·1 answer
  • What number is 100, 000, 000 more then 5, 438, 724, 022?
    7·1 answer
  • • You order 4 chicken sandwiches and a hamburger. The cost of a hamburger is $2.50 and the total bill is $14.30. Find the cost o
    7·1 answer
  • The slope-intercept form of the equation of a line that passes through point (–3, 8) is y = –y minus 3 equals negative StartFrac
    10·2 answers
  • What is the slope !<br> (The bottom one says : (-5, -3)
    5·1 answer
  • What is the product of 5x²y+3xy³
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!