Answer:
0.1319 or 13.2%
Step-by-step explanation:
You can solve this using the binomial probability formula.
The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.
Then, we can set the equation as follows:
P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k)
n=4, x=2, k=2
when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157
when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154
when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008
Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)
Answer: 30.48
Step-by-step explanation:
Sum the series of 30.48 + (1/2)(30.48)+ (1/4)(30.48)+(1/8)(30.48)+(1/16)(30.48)+(1/32)(30.48)
Or use an Excel spreadsheet
27
Step by step explanation This is how I got the answer to your question and I gave you the solution I hope this helps you out
Answer:
yesss!!!!
Step-by-step explanation:
Answer:
69
Step-by-step explanation:
nice