hold on i will send in the comments i’m working on it rn
F(x)/g(x) = (2x +3)(x -1)/(x -1) = 2x +3 . . . . . x ≠ 1
The domain of (f/g)(x) is all real numbers except 1.
_____
The domain of any rational function necessarilly excludes any values that make the function undefined, that is, that make the denominator zero.
Answer:
The answer is "
".
Step-by-step explanation:
![\bold{\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}6&5\\ 19&8\end{array}\right]}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C%2019%268%5Cend%7Barray%7D%5Cright%5D%7D)
Solve the L.H.S part:
![\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\\\\\\left[\begin{array}{cc}a+2c&b+2d\\3a+4c&3b+4d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%2B2c%26b%2B2d%5C%5C3a%2B4c%263b%2B4d%5Cend%7Barray%7D%5Cright%5D)
After calculating the L.H.S part compare the value with R.H.S:
![\left[\begin{array}{cc}a+2c&b+2d\\3a+4c&3b+4d\end{array}\right]= \left[\begin{array}{cc}6&5\\ 19&8\end{array}\right]} \\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%2B2c%26b%2B2d%5C%5C3a%2B4c%263b%2B4d%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C%2019%268%5Cend%7Barray%7D%5Cright%5D%7D%20%5C%5C%5C%5C)

In equation (i) multiply by 3 and subtract by equation (iii):

put the value of c in equation (i):

In equation (ii) multiply by 3 then subtract by equation (iv):

put the value of d in equation (iv):

The final answer is "
".
The missing coordinates of the parallelogram is (m + h, n).
Solution:
Given shape is a parallelogram.
Construction: Draw a line joining the diagonals.
<em>In parallelogram, diagonals bisect each other.</em>
Solve it using mid-point formula:

Here 


Using this midpoint find the missing coordinate.

Let the missing coordinates by x and y.
Here 



Now equate the x-coordinates and y-coordinates.

Multiply by 2 on both sides of the equation, we get
m + h = x, n = y
x = m + h and y = n
Hence the missing coordinates of the parallelogram is (m + h, n).
Answer:
7
Step-by-step explanation:
1/2<u>(48/6)</u> - 2 + 5
<u>1/2(8)</u> - 2 + 5
<u>4 - 2</u> + 5
<u>2 + 5</u>
7