Since we have a cubic root, we're interested in factoring cubes inside the root, so that we can take them out. If we factor 648, we have

So, we have
![3x\sqrt[3]{648 x^4 y^8} = \sqrt[3]{3\times 6^3\cdot x^3\cdot x \cdot y^6\cdot y^2}=3x\cdot 6\cdot x\cdot y^2\sqrt[3]{3\cdot x\cdot y^2}](https://tex.z-dn.net/?f=3x%5Csqrt%5B3%5D%7B648%20x%5E4%20y%5E8%7D%20%3D%20%5Csqrt%5B3%5D%7B3%5Ctimes%206%5E3%5Ccdot%20x%5E3%5Ccdot%20x%20%5Ccdot%20y%5E6%5Ccdot%20y%5E2%7D%3D3x%5Ccdot%206%5Ccdot%20x%5Ccdot%20y%5E2%5Csqrt%5B3%5D%7B3%5Ccdot%20x%5Ccdot%20y%5E2%7D)
And the result simplifies to
![18x^2y^2\sqrt[3]{3xy^2}](https://tex.z-dn.net/?f=18x%5E2y%5E2%5Csqrt%5B3%5D%7B3xy%5E2%7D)
Answer:
EBC and CBF are supplementary.
EBD=66
Step-by-step explanation:
Since vertical angles are congruent, ABE=CBF
ABE=40-x
40-x + 6x-30=90
5x+10=90
5x=80
x=16
16(6)-30=66
Answer:
kinetic energy
Step-by-step explanation:
When a person runs, their body must convert potential energy into kinetic energy.
Answer:
the answer is -1
Step-by-step explanation:
because well i don't know how to explain sorry im not very good at explaining this type of stuff but i know its the answer.
If brainiest is earned its greatly appreciated