Answer:
24
Step-by-step explanation:
f(x)=x^2+2x
Let x= 4
f(4)=4^2+2*4
= 16 + 8
= 24
<h3>
Answer:</h3>
B. (0, 9)
<h3>
Step-by-step explanation:</h3>
Reflection across x=a is represented by the transformation ...
... (x, y) ⇒(2a-x, y)
Reflection across y=b is represented by the transformation ...
... (x, y) ⇒ (x, 2b-y)
The double reflection, across x=2, y=1 will result in the transformation ...
... (x, y) ⇒ (2·2-x, y) ⇒ (4-x, 2·1-y) ⇒ (4-x, 2-y)
For (x, y) = X(4, -7), the transformed point is ...
... X''(4-4, 2-(-7)) = X''(0, 9)
Answer:
the side s is 18
Step-by-step explanation:
s=?
Area of square(A)=324
Now,
A=s²
324=s²
√(324)=s
s=18
Answer: see below
<u>Step-by-step explanation:</u>
(1)
![a)\quad EF = 3\sqrt2,\quad FG = 3\sqrt2,\quad GH = 3\sqrt2,\quad HE = 3\sqrt2](https://tex.z-dn.net/?f=a%29%5Cquad%20EF%20%3D%203%5Csqrt2%2C%5Cquad%20FG%20%3D%203%5Csqrt2%2C%5Cquad%20GH%20%3D%203%5Csqrt2%2C%5Cquad%20HE%20%3D%203%5Csqrt2)
b) FH = 6, EG = 6
c) Square (which means it is also a rectangle and parallelogram)
(2)
![a)\quad m_{EF}=3,\quad m_{FG}=-\dfrac{1}{2},\quad m_{GH}=3,\quad m_{HE}=-\dfrac{1}{2}](https://tex.z-dn.net/?f=a%29%5Cquad%20m_%7BEF%7D%3D3%2C%5Cquad%20m_%7BFG%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%2C%5Cquad%20m_%7BGH%7D%3D3%2C%5Cquad%20m_%7BHE%7D%3D-%5Cdfrac%7B1%7D%7B2%7D)
![b)\quad \text{Midpoint}_{EG}=(4.5, 1.5),\quad \text{Midpoint}_{FH}=(4.5, 1.5)](https://tex.z-dn.net/?f=b%29%5Cquad%20%5Ctext%7BMidpoint%7D_%7BEG%7D%3D%284.5%2C%201.5%29%2C%5Cquad%20%5Ctext%7BMidpoint%7D_%7BFH%7D%3D%284.5%2C%201.5%29)
c) Parallelogram