Answer:
Area of shaded region = 16π in² (D)
Step-by-step explanation:
The question is incomplete without the diagram if the circles. Find attached the diagram used in solving the question.
Area of the smaller circle = 8π in²
Area of a circle = πr²
πr² = 8π
r² =8
r = √8 = 2√2
From the diagram, there are two smaller circles in a bigger circle.
The radius of the bigger circle (R) is 2times the radius of the smaller circle (r)
R = 2r
Area of bigger circle = πR²
= π×(2r)² = π×(2×2√2)²
= π×(4√2)² = π×16×(√2)²
Area of bigger circle = π×16×2
Area of bigger circle = 32π in²
Since there are two smaller circles in a bigger circle
Area of shaded region = Area of bigger circle -2(area of smaller circles)
Area of shaded region = 32π in² - 2(8π in²)
Area of shaded region = 32π in² - 16π in²
Area of shaded region = 16π in²
A tell me out of 9 13 23
What is the smallest number or the number closest to 0
<u><em>Answer:</em></u>
AC = 10sin(40°)
<u><em>Explanation:</em></u>
The diagram representing the question is shown in the attached image
Since the given triangle is a right-angled triangle, we can apply the special trig functions
<u>These functions are as follows:</u>
sin(θ) = opposite / hypotenuse
cos(θ) = adjacent / hypotenuse
tan(θ) = opposite / adjacent
<u>Now, in the given diagram:</u>
θ = 40°
AC is the side opposite to θ
AB = 10 in is the hypotenuse
<u>Based on these givens</u>, we will use the sin(θ) function
<u>Therefore:</u>

Answer:
22.2 ft²
Step-by-step explanation:
The area (A) of a sector is calculated as
A = area of circle × fraction of circle
= πr² × 
= π × 7.13² × 
=
≈ 22.2 ft² ( nearest tenth )