Answer:
The correct answer is B.
Step-by-step explanation:
In order to find this, calculate out the discriminant for each of the following equations. If the discriminant is a perfect square, then it can be factored.
Discriminant = b^2 - 4ac
The only of the equations that does not yield a perfect square is B. The work for it is done below for you.
Discriminant = b^2 - 4ac
Discriminant = 7^2 - 4(2)(-5)
Discriminant = 49 + 40
Discriminant = 89
Since 89 is not a perfect square, we cannot factor this.
Answer:
(-3, 3√3)
Step-by-step explanation:
Evaluate each of the coordinates. Keep or drop the "i" as your convention requires.
6(cos(120°), i·sin(120°)) = (6·cos(120°), i·6·sin(120°)) = (6(-0.5), i·6·√3/2)
= (-3, 3√3 i)
You may want the (x, y) coordinates written as (-3, 3√3).
___
In the complex plane, this is -3+i·3√3.
The show has never confirmed how the trap door works but it is most likely filled with foam cube.
Answer:
1.) 8.09g ; 2) 206.7 years
Step-by-step explanation:
Given the following :
Half-life(t1/2) of Uranium-232 = 68.9 years
a) If you have a 100 gram sample, how much would be left after 250 years?
Initial quantity (No) = 100g
Time elapsed (t) = 250 years
Find the quantity of substance remaining (N(t))
Recall :
N(t) = No(0.5)^(t/t1/2)
N(250) = 100(0.5)^(250/68.9)
N(250) = 100(0.5)^3.6284470
N(250) = 100 × 0.0808590
= 8.0859045
= 8.09g
2) If you have a 100 gram sample, how long would it take for there to be 12.5 grams remaining?
Using the relation :
N / No = (1/2)^n
Where N = Amount of remaining or left
No = Original quantity
n = number of half-lifes
N = 12.5g ; No = 100g
12.5 / 100 = (1/2)^n
0.125 = (1/2)^n
Converting 0.125 to fraction
(1/8) = 1/2^n
8 = 2^n
2^3 = 2^n
n = 3
Recall ;
Number of half life's (n) = t / t1/2
t = time elapsed ; t1/2 = half life
3 = t / 68.9
t = 3 × 68.9
t = 206.7 years
Answer:
awnser choice b, when x =-2, -2+2 equals 0 so x int would be at -2